Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (5): 1947-1970.doi: 10.1007/s10473-022-0513-1

• Articles • Previous Articles    

LOCALIZED NODAL SOLUTIONS FOR SCHRÖDINGER-POISSON SYSTEMS

Xing WANG, Rui HE, Xiangqing LIU   

  1. Department of Mathematics, Yunnan Normal University, Kunming, 650500, China
  • Received:2020-11-30 Revised:2022-05-23 Published:2022-11-02
  • Contact: Xiangqing Liu,E-mail:lxq8u8@163.com E-mail:lxq8u8@163.com
  • Supported by:
    Supported by NSFC (12161093).

Abstract: In this paper, we study the existence of localized nodal solutions for Schrödinger-Poisson systems with critical growth

{ε2Δv+V(x)v+λψv=v5+μ|v|q2v,   inR3,ε2Δψ=v2,   inR3;v(x)0,ψ(x)0as|x|.
We establish, for small ε, the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function via the perturbation method, and employ some new analytical skills to overcome the obstacles caused by the nonlocal term φu(x)=14πR3u2(y)|xy|dy. Our results improve and extend related ones in the literature.

Key words: Schrödinger-Poisson systems, localized nodal solutions, perturbation method

CLC Number: 

  • 35B05
Trendmd