Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (5): 1734-1742.doi: 10.1007/s10473-022-0502-4

• Articles • Previous Articles    

PHASE PORTRAITS OF THE LESLIE-GOWER SYSTEM

Jaume LLIBRE1, Claudia VALLS2   

  1. 1. Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain;
    2. Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
  • Received:2021-05-12 Revised:2021-12-08 Published:2022-11-02
  • Contact: Claudia Valls,E-mail:cvalls@math.tecnico.ulisboa.pt E-mail:cvalls@math.tecnico.ulisboa.pt
  • Supported by:
    The first author was supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00 and the H2020 European Research Council grant MSCA-RISE-2017-777911. The second author was partially supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020.

Abstract: In this paper we characterize the phase portraits of the Leslie-Gower model for competition among species. We give the complete description of their phase portraits in the Poincaré disc (i.e., in the compactification of R2 adding the circle S1 of the infinity) modulo topological equivalence.
It is well-known that the equilibrium point of the Leslie-Gower model in the interior of the positive quadrant is a global attractor in this open quadrant, and in this paper we characterize where the orbits attracted by this equilibrium born.

Key words: predator-prey models, Leslie-Gower system, Poincaré compactification, global phase portraits

CLC Number: 

  • 34A05
Trendmd