Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (3): 847-864.doi: 10.1007/s10473-022-0302-x

• Articles • Previous Articles     Next Articles

ABSOLUTE MONOTONICITY INVOLVING THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND WITH APPLICATIONS

Zhenhang YANG1,2, Jingfeng TIAN3   

  1. 1. Engineering Research Center of Intelligent Computing for Complex Energy Systems of Ministry of Education, North China Electric Power University, Baoding, 071003, China;
    2. Zhejiang Society for Electric Power, Hangzhou, 310014, China;
    3. Department of Mathematics and Physics, North China Electric Power University, Baoding, 071003, China
  • Received:2020-06-05 Revised:2021-08-25 Published:2022-06-24
  • Contact: Jingfeng TIAN,E-mail:tianjf@ncepu.edu.en E-mail:tianjf@ncepu.edu.en

Abstract: Let K(r) be the complete elliptic integrals of the first kind for r(0,1) and fp(x)=[(1x)pK(x)]. Using the recurrence method, we find the necessary and sufficient conditions for the functions fp, lnfp, (lnfp)(i) (i=1,2,3) to be absolutely monotonic on (0,1). As applications, we establish some new bounds for the ratios and the product of two complete integrals of the first kind, including the double inequalities exp[r2(1r2)/64](1+r)1/4<K(r)K(r)<exp[r(1r)4],π2exp[θ0(12r2)]<π2K(r)K(r)<π2(rr)pexp[θp(12r2)],K2(12)K(r)K(r)12rrK2(12)

% for r(0,1) and p13/32, where r=1r2 and θp=2Γ(3/4)4/π2p.

Key words: Complete elliptic integrals of the first kind, absolute monotonicity, hypergeometric series, recurrence method, inequality

CLC Number: 

  • 33E05
Trendmd