Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (3): 719-728.doi: 10.1007/s10473-021-0306-y

• Articles • Previous Articles     Next Articles

SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS

Yueying YANG1, Weimao QIAN2, Hongwei ZHANG3, Yuming CHU4   

  1. 1. School of Mechanical and Electrical Engineering, Huzhou Vocational & Technical College, Huzhou 313000, China;
    2. School of Continuing Education, Huzhou Vocational & Technical College, Huzhou 313000, China;
    3. School of Mathematics and Statistics, Changsha University of Science & Technology, Changsha 410014, China;
    4. Department of Mathematics, Huzhou University, Huzhou 313000, China
  • Received:2019-05-24 Revised:2020-04-26 Online:2021-06-25 Published:2021-06-07
  • Contact: Yuming CHU E-mail:chuyuming2005@126.com,chuyuming@zjhu.edu.cn
  • About author:Yueying YANG,E-mail:yyy1008@163.com;Weimao QIAN,E-mail:qwm661977@126.com;Hongwei ZHANG,E-mail:hwzhang2018@163.com
  • Supported by:
    This research was supported by the Natural Science Foundation of China (61673169, 11301127, 11701176, 11626101, 11601485).

Abstract: In the article, we prove that the double inequalities

Gp[λ1a+(1λ1)b,λ1b+(1λ1)a]A1p(a,b)<[A(a,b),G(a,b)]<Gp[μ1a+(1μ1)b,μ1b+(1μ1)a]A1p(a,b),Cs[λ2a+(1λ2)b,λ2b+(1λ2)a]A1p(a,b)<[A(a,b),Q(a,b)]<Cs[μ2a+(1μ2)b,μ2b+(1μ2)a]A1p(a,b)
hold for all a, b > 0 with ab if and only if λ11/21(2/π)2/p/2, μ11/22p/(4p), λ21/2+23/(2s)(E(2/2)/π)1/s1/2 and μ21/2+s/(4s) if λ1,μ1(0,1/2), λ2,μ2(1/2,1), p1 and s1/2, where G(a,b)=ab, A(a,b)=(a+b)/2, T(a,b)=20π/2a2cos2t+b2sin2tdt/π, Q(a,b)=(a2+b2)/2, C(a,b)=(a2+b2)/(a+b) and E(r)=0π/21r2sin2tdt.

Key words: Geometric mean, arithmetic mean, Toader mean, ontraharmonic mean, complete elliptic integral

CLC Number: 

  • 26E60
Trendmd