数学物理学报(英文版) ›› 2016, Vol. 36 ›› Issue (5): 1524-1530.doi: 10.1016/S0252-9602(16)30087-X

• 论文 • 上一篇    下一篇

COEXISTENCE FOR MULTIPLE LARGEST REPRODUCTION RATIOS OF A MULTI-STRAIN SIS EPIDEMIC MODEL

Yoshiaki MUROYA1, Eleonora MESSINA2, Elvira RUSSO2, Antonia VECCHIO3   

  1. 1. Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan;
    2. Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli "Federico II"-Via Cintia, I-80126 Napoli, Italy;
    3. Istituto per Applicazioni del Calcolo "M. Picone", Sede di Napoli-CNR-Via P. Castellino, 111-80131 Napoli, Italy
  • 收稿日期:2014-06-13 修回日期:2015-09-19 出版日期:2016-10-25 发布日期:2016-10-25
  • 通讯作者: Yoshiaki MUROYA,ymuroya@waseda.jp E-mail:ymuroya@waseda.jp
  • 作者简介:Eleonora MESSINA,eleonora.messina@unina.it;Elvira RUSSO,elvrusso@unina.it;Antonia VECCHIO,a.vecchio@iac.cnr.it
  • 基金资助:

    The first author was supported by JSPS KAKENHI Grant Number 15K05010.

COEXISTENCE FOR MULTIPLE LARGEST REPRODUCTION RATIOS OF A MULTI-STRAIN SIS EPIDEMIC MODEL

Yoshiaki MUROYA1, Eleonora MESSINA2, Elvira RUSSO2, Antonia VECCHIO3   

  1. 1. Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan;
    2. Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli "Federico II"-Via Cintia, I-80126 Napoli, Italy;
    3. Istituto per Applicazioni del Calcolo "M. Picone", Sede di Napoli-CNR-Via P. Castellino, 111-80131 Napoli, Italy
  • Received:2014-06-13 Revised:2015-09-19 Online:2016-10-25 Published:2016-10-25
  • Contact: Yoshiaki MUROYA,ymuroya@waseda.jp E-mail:ymuroya@waseda.jp
  • Supported by:

    The first author was supported by JSPS KAKENHI Grant Number 15K05010.

摘要:

In this paper, to complete the global dynamics of a multi-strains SIS epidemic model, we establish a precise result on coexistence for the cases of the partial and complete duplicated multiple largest reproduction ratios for this model.

关键词: multi-strains SIS epidemic model, global attractivity, Lyapunov function, coexistence

Abstract:

In this paper, to complete the global dynamics of a multi-strains SIS epidemic model, we establish a precise result on coexistence for the cases of the partial and complete duplicated multiple largest reproduction ratios for this model.

Key words: multi-strains SIS epidemic model, global attractivity, Lyapunov function, coexistence

中图分类号: 

  • 34K20