[1] Tingley D. Isometries of the unit spheres. Geometriae Dedicata, 1987, 22: 371--378
[2] Ding Guanggui. On perturbatins and extensions of isometric operators. Taiwanese J of Math, 2001, 5(1): 109--115
[3] Ding Guanggui. On extensions and approximations of isometric operators. Advances in Math, 2003, 32(5): 529--536 (in Chinese)
[4] Ding Guanggui. The representation of onto isometric mappings between two spheres of l∞-type spaces and the application on isometric extension problem. Science in China Ser A, 2004, 34(2): 157--164 (in Chinese);
2004, 47(5): 722--729 (in English)
[5] Ding Guanggui. The isometric extension problem in the unit spheres of lp(Γ)(p>1) type spaces. Science in China Ser A, 2002, 32(11): 991--995 (in Chinese); 2003, 46(3): 333--338 (in English)
[6] Ding Guanggui. The representation theorem of onto isometric mapping between two unit spheres of l1(Γ) type spaces and the application on isometric extension problem. Acta Math Sinica, 2004, 20(6): 1089--1094
[7] An Guimei. Isometries on unit sphere of (l βn). J Math Anal Appl, 2005, 301: 249--254
[8] Fu Xiaohong. Isometries on the space(s). Acta Math Scientia, 2006, 26B(3): 502--508
[9] Ding Guanggui. The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space. Science in China Ser A, 2002, 45(4): 479--483
[10] Wang Jian. On extension of isometries between unit spheres of ALp-spaces (1< p < ∞ ). Proc Amer Math Soc, 2004, 132(10): 2899--2909
[11] Hou Zhibin, Zhang Lijuan. The isometric extension of the into mapping between the unit spheres of
ALp- spaces,(1< p < ∞ ). Acta Math Sinica (Chinese Series), 2007, 50(6): 1435--1440
[12] Ding Guanggui. On the extension of isometries between unit spheres of E and C(Ω). Acta Math Sinica (English Series), 2003, 19(4): 793--800
[13] Ding Guanggui. The isometric extension of the into mapping from the L∞ (Γ)-type space to some Banach space E. Illinois J Math, 2007, 52(2): 445--453
[14] Ding Guanggui. The isometric extension of an into mapping from the unit sphere S(l(2)∞) to S(L1(μ)).
Acta Math Sinica (English Series), 2006, 22(6): 1721--1724
[15] Mayer-Nieberg P. Banach Lattices. Berlin, Heildelberg, New York: Springer-Verlag, 1991
[16] Lindenstrauss J, Tzafriri L. Classical Banach Spaces II. Berlin, Heildelberg, New York: Springer, 1979
[17] Diestel J, Uhl Jr J J. Vector Measure. Math Surreys 15. Providence, R I: Amer Math Soc, 1977
[18] Dai Yi. On the isometric extension problem from the unit sphere S(l(2)) into S(l(3)). unpublished
|