[1] Andrews G E. $q$-Orthogonal polynomials, Rogers-Ramanujan identities and mock theta functions. Proc Steklov Inst Math, 2012, 276: 21-32 [2] Askey R.Beta integrals and $q$-extensions//Proceedings of the Ramanujan Centennial International Conference. Annamalainagar, 15-18 December, 1987: 85-102 [3] Aslan H, Ismail M E H. A $q$-translation to Liu's calculus. Ann Comb, 2019, 23: 465-488 [4] Atakishiyev N M. On the Askey-Wilson $q$-beta integral. Teoret Mat Fiz, 1994, 99: 155-159 [5] Bailey W N. On the basic bilateral hypergeometric series $_2\psi_2$. Quart J Math (Oxford), 1950, 1: 194-198 [6] Bhatnagar G, Rai S. Expansion formulas for multiple basic hypergeometric series over root systems. Adv Appl Math, 2022, 137: 102329 [7] Carlitz L. Some polynomials related to theta functions. Ann Mat Pure Appl, 1955, 41: 359-373 [8] Chen D, Wang L, Representations of mock theta functions. Adv Math, 2020, 365: 107037 [9] Chen W Y C, Liu Z G. Parameter augmenting for basic hypergeometric series I//Sagan B E, Stanley R P. Mathematical Essays in Honor of Gian-Carlo Rota. Basel: Birkuser, 1998: 111-129 [10] Cui S P, Gu N S S. Some new mock theta functions. Adv Appl Math, 2021, 131: 102267 [11] Gasper G, Rahman M. Basic Hypergeometric Series.2nd ed. Cambridge: Cambridge Univ Press, 2004 [12] Jackson F H. On $q$-functions and a certain difference operator. Trans Roy Soc Edin, 1908, 46: 253-281 [13] Liu Z G. An expansion formula for $q$-series and applications. Ramanujan J, 2002, 6: 429-447 [14] Liu Z G. Some operator identities and $q$-series transformation formulas. Discret Math, 2003, 265: 119-139 [15] Liu Z G. Two $q$-difference equations and $q$-operator identities. J Difference Equ Appl, 2010, 16: 1293-1307 [16] Liu Z G. An extension of the non-terminating ${}_6\phi_5$ summation and the Askey-Wilson polynomials. J Difference Equ Appl, 2011, 17: 1401-1411 [17] Liu Z G.On the $q$-partial differential equations and $q$-series//The Legacy of Srinivasa Ramanujan Ramanujan Math Soc Lect Notes Ser, Vol 20. Mysore: Ramanujan Math Soc, 2013: 213-250 [18] Liu Z G. A $q$-series expansion formula and the Askey-Wilson polynomials. Ramanujan J, 2013, 30: 193-210 [19] Liu Z G.On the $q$-derivative and $q$-series expansions. Int J Number Theory, 2013, 9: 2069-2089 [20] Liu Z G. A $q$-extension of a partial differential equation and the Hahn polynomials. Ramanujan J, 2015, 38: 481-501 [21] Liu Z G. On a reduction formula for a kind of double $q$-integrals. Symmetry, 2016, 8(6): 44 [22] Liu Z G. Extensions of Ramanujan's reciprocity theorem and the Andrews-Askey integral. J Math Anal Appl, 2016, 443: 1110-1129 [23] Liu Z G.On a system of $q$-partial differential equations with applications to $q$-series//Analytic Number Theory, Modular Forms and $q$-hypergeometric Series. Springer Proc Math Stat, 221. Cham: Springer, 2017: 445-461 [24] Liu Z G. A $q$-operational equation and the Rogers-Szegö polynomials. Sci China Math, 2023. https://doi.org/10.1007/s11425-021-1999-2 [25] Liu Z G.A multiple $q$-translation formula and its implications. Acta Math Sin-English Ser, DOI:10.1007/S10114-023-2237-0 [26] Malgrange B.Lectures on Functions of Several Complex Variables. Berlin: Springer, 1984 [27] Range R M. Complex analysis: A brief tour into higher dimensions. Amer Math Monthly, 2003, 110: 89-108 [28] Rogers L J. On a three-fold symmetry in the elements of Heine's series. Proc London Math Soc, 1893, 24: 171-179 [29] Schendel L. Zur theorie der functionen. J Reine Angew Math, 1878, 84: 80-84 [30] Szegö G. Ein Betrag zur Theorie der Thetafunktionen. Sitz Preuss Akad Wiss Phys Math, 1926, 19: 242-252 [31] Taylor J.Several Complex Variables with Connections to Algebraic Geometry and Lie Groups. Graduate Studies in Mathematics, Vol 46. Providence: Amer Math Soc, 2002 [32] Wang C, Chern S. Some $q$-transformation formulas and Hecke-type identities. Int J Number Theory, 2019, 15: 1349-1367 [33] Wang J, Ma X. An expansion formula of basic hypergeometric series via the $(1-xy, y-x)$-inversion and its applications. arXiv:1301.3582, 2021 [34] Zhang Helen W J. Further generalizations of some Hecke-type identities. Int J Number Theory, 2022, 18: 361-387 [35] Zhang W J. Further extensions of some truncated Hecke type identities. Acta Mathematica Scientia, 2022, 42B(1): 73-90 [36] Zhang Y, Zhang W. Hecke-Rogers type series representations for infinite products. Ramanujan J, 2022, 58: 889-903 |