[1] Ackermann M R, Blömer J.Coresets and approximate clustering for Bregman divergences//Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discete Algorithms. Philadelphia, New York: SIAM, 2009: 1088-1097 [2] Agueh M, Carlier G. Barycenters in the Wasserstein space. SIAM J Math Anal Appl, 2011, 43: 904-924 [3] Alvarez-Esteban P C, del Barrio E, Cuesta-Albertos J A, Matran C. A fixed point approach to barycenters in Wasserstein spaces. J Math Anal Appl, 2016, 441: 744-762 [4] Amari S.Information Geometry and its Applications. Tokyo: Springer, 2016 [5] Ando T. Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl, 1979, 26: 203-241 [6] Audenaert K, Datta N. $\alpha$-z-Rényi relative entropies. J Math Phys, 2015, 56: 022202 [7] Banerjee A, Merugu S, Dhillon I, Ghosh J. Clustering with Bregman divergences. J Mach Learn Res, 2005, 6: 1705-1749 [8] Bhatia R. Positive Definite Matrices.Princeton Series in Applied Mathematics. Princeton: Princeton Univ Press, 2007 [9] Bhatia R, Gaubert S, Jain T. Matrix versions of the Hellinger distance. Lett Math Phys, 2019, 109: 1777-1804 [10] Bhatia R, Jain T, Lim Y. Inequalities for the Wasserstein mean of positive definite matrices. Linear Algebra Appl, 2019, 576: 108-123 [11] Bhatia R, Jain T, Lim Y. On the Bures-Wasserstein distance between positive definite matrices. Expo Math, 2019, 37(2): 165-191 [12] Bhatia R, Jain T, Lim Y. Strong convexity of sandwiched entropies and related optimization problems. Rev Math Phys, 2018, 30(9): 1850014 [13] Bhatia R, Karandikar R L. Monotonicity of the matrix geometric mean. Math Ann, 2012, 353: 1453-1467 [14] Chebbi Z, Moakher M. Means of Hermitian positive-definite matrices based on the log-determinant $\alpha$-divergence function. Linear Algebra Appl, 2012, 436: 1872-1889 [15] Dhillon I S, Tropp J A. Matrix nearness problems with Bregman divergences. SIAM J Matrix Anal Appl, 2007, 29(4): 1120-1146 [16] Dinh T H, Le C T, Vo B K, Vuong T D. The $\alpha$-z-Bures Wasserstein divergence. Linear Algebra Appl, 2021, 624: 267-280 [17] Horn R A, Johnson C R. Matrix Analysis.2nd ed. Cambridge: Cambridge University Press, 2013 [18] Hwang J, Jung M, Kim S. Right Rényi mean and tensor product. J Appl Math & Informatics, 2021, 39(5/6): 751-760 [19] Hwang J, Kim S. Bounds for the Wasserstein mean with applications to the Lie-Trotter mean. J Math Anal Appl, 2019, 475: 1744-1753 [20] Kim S, Lee H. Inequalities of the Wasserstein mean with other matrix means. Ann Funct Anal, 2020, 11: 194-207 [21] Lawson J, Lim Y. Karcher means and Karcher equations of positive definite operators. Trans Amer Math Soc Series B, 2014, 1: 1-22 [22] Lim Y, Pálfia M. Matrix power mean and the Karcher mean. J Funct Anal, 2012, 262: 1498-1514 [23] Mosonyi M, Ogawa T. Divergence radii and the strong converse exponent of classical-quantum channel coding with constant compositions. IEEE Trans Information Theory, 2021, 67(3): 1668-1698 [24] Pluim J P W, Maintz J B A, Viergever M A. $f$-Information measures in medical image registration. IEEE Trans Med Imaging, 2004, 23(12): 1508-1516 [25] Sra S. Metrics induced by Jensen-Shannon and related divergences on positive definite matrices. Linear Algebra Appl, 2021, 616: 125-138 [26] Ullah A. Uses of entropy and divergence measures for evaluating econometric approximations and inference. J Economet, 2002, 107(1/2): 313-326 [27] Vergin R. O'Shaughnessy D. On the use of some divergence measures in speaker recognition. IEEE Int Conf Acoust Speech Signal Process, 1999, 1: 309-312 [28] Virosztek D. The metric property of the quantum Jensen-Shannon divergence. Adv Math, 2021, 380: 107595 [29] Wilde M, Winter A, Yang D. Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy. Comm Math Phys, 2014, 331: 593-622 [30] Zhang F.Matrix Theory: Basic Results and Techniques. 2nd ed. New York: Springer, 2011 |