[1] Stolarsky K B. The power and generalized logarithmic means. Amer Math Monthly, 1980, 87(7): 545–548
[2] Pearce C E M, Pe?cari´c J. Some theorems of Jensen type for generalized logarithmic means. Rev Roumaine Math Pure Appl, 1995, 40(9/10): 789–795
[3] Seiffert H J. Aufgabe 16. Die Wurzel, 1995, 29: 221–222
[4] Hästo P A. A monotonicity property of ratio of symmetic homogeneous means. J Inequal Pure Appl Math, 2002, 3(5): Article 71
[5] Zheng N G, Zhang X M, Chu Y M. Convexity and geometrical convexity of exponential and logarithmic means in N variables. Acta Math Sci, 2008, 28A(6): 1173–1180
[6] Shi M Y, Chu Y M, Jiang Y P. Optimal inequalities related to the power, harmonic and identric means. Acta Math Sci, 2011, 31A(5): 1377–1384
[7] Shi M Y, Chu Y M, Jiang Y P. Optimal inequalities among various means of two arguments. Abstr Appl Anal, 2009, Article ID 694394
[8] Kahlig P, Matkowski J. Functional equations involving the logarithmic mean. Z Angew Math Mech, 1996, 76(7): 385–390
[9] Pittenger A O. The logarithmic mean in n variables. Amer Math Monthly, 1985, 92(2): 99–104
[10] P´olya G, Szeg¨o G. Isoperimetric Inequalities in Mathematical Physics. Princenton: Pricenton University Prees, 1951
[11] Bullen P S, Mitrinovic´c D S, Vasi´c P M. Means and Their Inequalities. Dordrecht: D Reidel Pubishing Co, 1988
[12] Lin T P. The power mean and the logarithmic mean. Amer Math Monthly, 1974, 81: 879–883
[13] Pittenger A O. Inequalities between arithmetic and logarithmic means. Univ Beograd Publ Elektrotehn Fak Ser Mat Fiz, 1981, 1980(678–715): 15–18
[14] Imoru C O. The power mean and the logarithmic mean. Internat J Math Math Sci, 1982, 5(2): 337–343 |