[1] |
Bank R E, Coughran W M, Fichtner W, Grosse E H, Rose D J, Smith R K. Transient simulation of silicon devices and circuits. IEEE Transactions on Computer-Aided Design, 1985, 4(4):436-451
|
[2] |
Jerome J W. Mathematical Theory and Approximation of Semiconductor Models. Philadelphia:SIAM, 1994
|
[3] |
Lou Y. On basic senmiconductor equation with heat conduction. J Partial Diff Eqs, 1995, 8(1):43-54
|
[4] |
Yuan Y R. Finite difference method and analysis for three-dimensional semiconductor device of heat conduction. Science in China, Ser A, 1996, 39(11):1140-1151
|
[5] |
Shi M. Physics of Modern Semiconductor Device. Beijing:Science Press, 2002
|
[6] |
He Y, Wei T L. Computer Simulation Method for Semiconductor Device. Beijing:Scicence Press, 1989
|
[7] |
Yuan Y R. Recent progress in numerical methods for semiconductor devices. Chinese J Computational Physics, 2009, 26(3):317-324
|
[8] |
Yuan Y R. Theory and application of reservoir numerical simulation (Chapter 7. Numerical Method for Semiconductor Device Dectector). Beijing:Science Press, 2013
|
[9] |
Gummel H K. A self-consistent iterative scheme for one-dimensional steady-state transistor calculation. IEEE Trans:Electron Device, 1964, 11(10):455-465
|
[10] |
Douglas Jr J, Yuan Y R. Finite difference methods for transient behavior of a semiconductor device. Math Appl Comp, 1987, 6(1):25-37
|
[11] |
Yuan Y R, Ding L Y, Yang H. A new method and theoretical analysis of numerical analog of semiconductor. Chinese Science Bulletin, 1982, 27(7):790-795
|
[12] |
Yuan Y R. Finite element method and analysis of numerical simulation of semiconductor device. Acta Math Sci, 1993, 13(3):241-251
|
[13] |
Yuan Y R. The approximation of the electronic potential by a mixed method in the simulation of semiconductor. J Systems Sci Math Sci, 1991, 11(2):117-120
|
[14] |
Yuan Y R. Characteristics method with mixed finite element for transient behavior of semiconductor device. Chin Sci Bull, 1991, 36(17):1356-1357
|
[15] |
Cai Z. On the finite volume element method. Numer Math, 1991, 58(1):713-735
|
[16] |
Li R H, Chen Z Y. Generalized Difference of Differential Equations. Changchun:Jilin University Press, 1994
|
[17] |
Raviart P A, Thomas J M. A mixed finite element method for second order elliptic problems//Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, 606. Springer, 1977
|
[18] |
Douglas Jr J, Ewing R E, Wheeler M F. Approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal Numer, 1983, 17(1):17-33
|
[19] |
Douglas Jr J, Ewing R E, Wheeler M F. A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal Numer, 1983, 17(3):249-265
|
[20] |
Russell T F. Rigorous block-centered discritization on inregular grids:Improved simulation of complex reservoir systems. Project Report, Research Comporation, Tulsa, 1995
|
[21] |
Weiser A, Wheeler M F. On convergence of block-centered finite difference for elliptic problems. SIAM J Numer Anal, 1988, 25(2):351-375
|
[22] |
Jones J E. A Mixed Volume Method for Accurate Computation of Fluid Velocities in Porous Media[D]. Denver:University of Colorado, 1995
|
[23] |
Cai Z, Jones J E, Mccormilk S F, Russell T F. Control-volume mixed finite element methods. Comput Geosci, 1997, 1(3):289-315
|
[24] |
Chou S H, Kawk D Y, Vassileviki P.Mixed volume methods on rectangular grids for elliptic problem. SIAM J Numer Anal, 2000, 37(3):758-771
|
[25] |
Chou S H, Kawk D Y, Vassileviki P. Mixed volume methods for elliptic problems on triangular grids. SIAM J Numer Anal, 1998, 35(5):1850-1861
|
[26] |
Chou S H, Vassileviki P. A general mixed covolume framework for constructing conservative schemes for elliptic problems. Math Comp, 1999, 68(227):991-1011
|
[27] |
Rui H X, Pan H. A block-centered finite difference method for the Darcy-Forchheimer Model. SIAM J Numer Anal, 2012, 50(5):2612-2631
|
[28] |
Pan H, Rui H X. Mixed element method for two-dimensional Darcy-Forchheimer model. J Scientific Computing, 2012, 52(3):563-587
|
[29] |
Yuan Y R, Liu Y X, Li C F, Sun T J, Ma L Q. Analysis on block-centered finite differences of numerical simulation of semiconductor detector. Appl Math Comput, 2016, 279:1-15
|
[30] |
Yuan Y R, Yang Q, Li C F, Sun T J. Numerical method of mixed finite volume-modified upwind fractional step difference for three-dimensional semiconductor device transient behavior problems. Acta Math Sci, 2017, 37B(1):259-279
|
[31] |
Dawson C N, Kirby R. Solution of parabolic equations by backward Euler-mixed finite element method on a dynamically changing mesh. SIAM J Numer Anal, 2000, 37(2):423-442
|
[32] |
Arbogast T, Wheeler M F, Yotov I. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J Numer Anal, 1997, 34(2):828-852
|
[33] |
Arbogast T, Dawson C N, Keenan P T, Wheeler M F, Yotov I. Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J Sci, Comput, 1998, 19(2):404-425
|
[34] |
Nitsche J. Lineare spline-funktionen und die methoden von Ritz für elliptische randwertprobleme. Arch Rational Mech Anal, 1970, 36(5):348-355
|
[35] |
Jiang L S, Pang Z Y. Finite Element Method and Its Theory. Beijing:People's Education Press, 1979
|