[1] Bergé L. Wave collapse in physics: principles and applications to light and plasma waves. Physics Reports,1998, 303(5/6): 259-370 [2] Cho Y, Ozawa T. Sobolev inequalities with symmetry. Commun Contemp Math, 2009, 11(3): 355-365 [3] Dinh V D. Blowup of $H^{1}$ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal,2018, 174: 169-188 [4] Dinh V D. Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction. Nonlinear Anal, 2020, 190: 111589 [5] Du D P, Wu Y F, Zhang K J. On blow-up criterion for the nonlinear Schrödinger equation. Discrete Contin Dyn Syst,2016, 36(7): 3639-3650 [6] Fanelli L, Montefusco E. On the blow-up threshold for weakly coupled nonlinear Schrödinger equations. J Phys A: Math Theor,2007, 40(47): 14139-14150 [7] Ginibre J, Velo G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J Funct Anal,1979, 32(1): 1-32 [8] Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys,1977, 18(9): 1794-1797 [9] Holmer J, Roudenko S. Divergence of infinite-variance nonradial solutions to the 3D NLS equation. Commun Partial Diff Equ, 2010, 35(5): 878-905 [10] Li X G, Wu Y H, Lai S Y. A sharp threshold of blow-up for coupled nonlinear Schrödinger equations. J Phys A: Math Theor,2010, 43(16): 165205 [11] Menyuk C. Nonlinear pulse propagation in birefringent optical fibers. IEEE J Quantum Electron, 1987, 23(2): 174-176 [12] Ogawa T, Tsutsumi Y. Blow-up of $H^{1}$ solution for the nonlinear Schrödinger equation. J Differ Equ,1991, 92(2): 317-330 [13] Ogawa T, Tsutsumi Y. Blow-up of $H^{1}$ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity. Proc Amer Math Soc,1991, 111(2): 487-496 [14] Roberts D C, Newell A C. Finite-time collapse of $N$ classical fields described by coupled nonlinear Schrödinger equations. Phys Rev E,2006, 74(4): 047602 [15] Wang Z, Cui S B. On the cauchy problem of a coherently coupled Schrödinger system. Acta Math Sci,2016, 36B(2): 371-384 [16] Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Commun Math Phys,1983, 87(4): 567-576 [17] Zeng X Y, Zhang Y M, Zhou H S. Existence and stability of standing waves for a coupled nonlinear Schrödinger system. Acta Math Sci,2015, 35B(1): 45-70 [18] Zhang J. Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations. Nonlinear Anal,2002, 48(2): 191-207 |