[1] Carrillo J A, Li J, Wang Z A. Boundary spike-layer solutions of the singular Keller-Segel system: Existence and stability. Proc Lond Math Soc, 2021, 122: 42-68 [2] Chen G Q, Liu H. Formation of delta shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM Journal on Mathematical Analysis, 2003, 34: 925-938 [3] Delacruz R. Riemann problem for a $2 \times 2$ hyperbolic system with linear damping. Acta Appl Math, 2020, 170: 631-647 [4] Fan J, Zhao K. Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis. J Math Anal Appl, 2012, 394: 687-695 [5] Fontelos M A, Friedman A, Hu B. Mathematical analysis of a model for the initiation of angiogenesis. SIAM J Math Anal, 2002, 33: 1330-1355 [6] Goatin P, LeFloch P G. The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann Inst Henri Poincare Anal Non Lineaire, 2004, 21: 881-902 [7] Guo J, Xiao J X, Zhao H J, et al. Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Mathematica Scientia, 2009, 29B: 629-641 [8] Horstmann D. From1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2003, 105: 103-165 [9] Hou Q Q, Wang Z A, Zhao K. Boundary layer problem on a hyperbolic system arising from chemotaxis. J Differential Equations, 2016, 261: 5035-5070 [10] Hsiao L, De Mottoni P. Existence and uniqueness of the Riemann problem for a nonlinear system of conservation laws of mixed type. Transactions of the American Mathematical Society, 1990, 332: 121-158 [11] Jin H Y, Li J, Wang Z A. Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity. J Differential Equations, 2013, 255: 193-219 [12] Keyfitz B L. Change of type in three-phase flow: A simple analogue. J Differential Equations, 1989, 80: 280-305 [13] Keyfitz B L. Admissibility conditions for shocks in conservation laws that change type. SIAM Journal on Mathematical Analysis, 1991, 22: 1284-1292 [14] Keyfitz B L, Kranzer H C. The Riemann problem for a class of hyperbolic conservation laws exhibiting a parabolic degeneracy. J Differential Equations, 1983, 47: 35-65 [15] Keller E F, Segel L A. A model for chemotaxis. J Theoretical Biology, 1971, 30: 225-234 [16] Keller E F, Segel L A. Traveling bands of chemotactic bacteria: a theoretical analysis. J Theoretical biology, 1971, 30: 235-248 [17] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theoretical Biology, 1970, 26: 399-415 [18] Lax P D. Hyperbolic systems of conservation laws. II. Comm Pure Appl Math, 1957, 10: 537-566 [19] Levine H A, Sleeman B D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J Appl Math, 1997, 57: 683-730 [20] Li H C, Zhao K. Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. J Differential Equations, 2015, 258: 302-338 [21] Li T, Pan R, Zhao K. Global dynamics of a hyperbolic-parabolic model arising from chemotaxis. SIAM J Appl Math, 2012, 72: 417-443 [22] Li J, Wang L, Zhang K. Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis. Math Methods Appl Sci, 2013, 36: 1862-1877 [23] Li T, Wang Z A.Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis. Math Models Methods Appl Sci, 2010, 20: 1967-1998 [24] Li T, Wang Z A. Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. J Differential Equations, 2011, 250: 1310-1333 [25] Li T, Wang Z A. Nonlinear stability of travelling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM J Appl Math, 2009, 70: 1522-1541 [26] Li T, Liu H, Wang L. Oscillatory traveling wave solutions to an attractive chemotaxis system. J Differential Equation, 2016, 261: 7080-7098 [27] Li T, Mathur N. Rienmann problem for a non-strictly hyperbolic system in chemotaxis. Discrete and Continuous Dynamical System Series B, 2022, 27(4): 2173-2187 [28] Li J Y, Li T, Wang Z A. Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity. Math Models Methods Appl Sci, 2014, 24: 2819-2849 [29] Mailybaev A A, Marchesin D. Lax shocks in mixed-type systems of conservation laws. Journal of Hyperbolic Differential Equations, 2008, 5: 295-315 [30] Marchesin D, Paes-Leme P J. A Riemann problem in gas dynamics with bifurcation//Witten M. Hyperbolic Partial Differential Equations. New York: Pergamon, 1986: 433-455 [31] Martinez V R, Wang Z, Zhao K. Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology. Indiana Univ Math J, 2018, 67: 1383-1424 [32] Othmer H G, Stevens A. Aggregation, blowup,collapse: the ABC's of taxis in reinforced random walks. SIAM J Appl Math, 1997, 57: 1044-1081 [33] Peng H, Wang Z A, Zhao K, et al. Boundary layers and stabilization of the singular Keller-Segel system. Kinet Relat Models, 2018, 11: 1085-1123 [34] Peng H, Wen H, Zhu C. Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis. Z Angew Math Phys, 2014, 65: 1167-1188 [35] Rascle M. The Riemann problem for a nonlinear non-strictly hyperbolic system arising in biology. Computers and Mathematics with Applications, 1985, 11: 223-238 [36] Smoller J.Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1994 [37] Wang Z A, Hillen T. Shock formation in a chemotaxis model. Mathematical Methods in the Applied Sciences, 2010, 31: 45-70 [38] Wang Z A, Xiang Z, Yu P. Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis. J Differential Equations, 2016, 260: 2225-2258 |