数学物理学报(英文版) ›› 2023, Vol. 43 ›› Issue (3): 1116-1130.doi: 10.1007/s10473-023-0308-z
Qing Guo1, Leiga Zhao2,†
收稿日期:
2021-05-24
修回日期:
2022-08-22
出版日期:
2023-06-25
发布日期:
2023-06-06
通讯作者:
† Leiga Zhao, E-mail: zhaoleiga@163.com
作者简介:
Qing Guo, E-mail: guoqing0117@163.com
基金资助:
Qing Guo1, Leiga Zhao2,†
Received:
2021-05-24
Revised:
2022-08-22
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Leiga Zhao, E-mail: zhaoleiga@163.com
About author:
Qing Guo, E-mail: guoqing0117@163.com
Supported by:
摘要: In this paper, we study the Schrödinger equations
(−Δ)su+V(x)u=a(x)|u|p−2u+b(x)|u|q−2u, x∈ RN,
where 0<s<1, 2<q<p<2∗s, 2∗s is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.
Qing Guo, Leiga Zhao. POSITIVE SOLUTIONS WITH HIGH ENERGY FOR FRACTIONAL SCHRÖDINGER EQUATIONS*[J]. 数学物理学报(英文版), 2023, 43(3): 1116-1130.
Qing Guo, Leiga Zhao. POSITIVE SOLUTIONS WITH HIGH ENERGY FOR FRACTIONAL SCHRÖDINGER EQUATIONS*[J]. Acta mathematica scientia,Series B, 2023, 43(3): 1116-1130.
[1] Alves C O, Miyagaki O H. Existence and concentration of solution for a class of fractional elliptic equation in RN via penalization method. Calc Var Partial Differential Equations, 2016, 55: Art 47 [2] Ambrosio V.Mountain pass solutions for the fractional Berestycki-Lions problem. Adv Differential Equations, 2018, 23: 455-488 [3] Ambrosio V, d'Avenia P. Nonlinear fractional magnetic Schrüodinger equation: existence and multiplicity. J Differential Equations, 2018, 264: 3336-3368 [4] Amick C J, Toland J F.Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane. Acta Math, 1991, 167: 107-126 [5] Bahri A, Li Y Y.On the min-max procedure for the existence of a positive solution for certain scalar field equations in RN. Rev Mat Iberoamericana, 1990, 6: 1-15 [6] Benci V, Cerami G.Positive solutions of semilinear elliptic problems in exterior domains. Arch Rat Mech Anal, 1987, 99: 283-300 [7] Caffarelli L, Silvestre L.An extension problem related to the fractional Laplacian. Comm in Part Diff Equa, 2007, 32: 1245-1260 [8] Cao D M.Positive solutions and bifurcation from essential spectrum of semilinear elliptic equation on RN. Nonlinear Analysis TMA, 1990, 15: 1045-1052 [9] Cerami G, Passaseo D.The effect of concentrating potentials in some singularly perturbed problems. Calc Var Partial Differential Equations, 2003, 17: 257-281 [10] Cerami G, Vaira G.Positive solutions for some nonautonomous Schrüodinger-Poisson systems. J Diff Equations, 2010, 248: 521-543 [11] Chang X, Wang Z-Q.Ground state of scalar field equations involving fractional Laplacian with general nonlinearity. Nonlinearity, 2013, 26: 479-494 [12] Chen W, Li C, Li Y.A direct method of moving planes for the fractional Laplacian. Adv Math, 2017, 308: 404-437 [13] Cheng M.Bound state for the fractional Schrüodinger equation with unbounded potential. J Math Phys, 2012, 53: 043507 [14] Cho Y, Ozawa T.A note on the existence of a ground state solution to a fractional Schrüodinger equation. Kyushu J Math, 2013, 67: 227-236 [15] Dipierro S, Palatucci G, Valdinoci E.Existence and symmetry results for a Schrüodinger type problem involving the fractional Laplacian. Matematiche (Catania), 2013, 68: 201-216 [16] Évéquoz G, Fall M M.Positive solutions to some nonlinear fractional Schrüodinger equations via a min-max procedure. arXiv:1312.7068 [17] Fall M M, Valdinoci E.Uniqueness and nondegeneracy of positive solutions of (-△)s [18] Fall M M, Jarohs S.Overdetermined problems with fractional Laplacian. ESAIM Control Optim Calc Var, 2015, 21: 924-938 [19] Felmer P, Quaas A, Tan J G.Positive solutions of nonlinear Schrüodinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1237-1262 [20] Feng B.Ground states for the fractional Schrüodinger equation. Electron J Differ Eq, 2013, 127: 1-11 [21] Frank R L, Lenzmann E.Uniqueness of non-linear ground states for fractional Laplacians in R. Acta Mathematica, 2013, 210: 261-318 [22] Frank R L, Lenzmann E, Silvestre L.Uniqueness of radial solutions for the fractional Laplacian. Commun Pure Appl Math, 2016, 69: 1671-1726 [23] He X, Zou W. Existence and concentration result for the fractional Schrüodinger equations with critical nonlinearities. Calc Var Partial Differential Equations, 2016, 55: Art 91 [24] Kwong M K.Uniqueness of positive solutions of △ [25] Jarohs S.Symmetry of solutions to nonlocal nonlinear boundary value problems in radial sets. Nonlinear Differential Equations Appl, 2016, 23(3): 1-22 [26] Jin T, Li Y, Xiong J.On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions. J Eur Math Soc, 2014, 16: 1111-1171 [27] Laskin N.Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268: 298-305 [28] Li Q, Teng K, Wu X.Ground states for fractional Schrüodinger equations with critical growth. J Math Phys, 2018, 59: 033504 [29] Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 109-145, 223-283 [30] Molica Bisci G, Rădulescu V, Servadei R.Variational Methods for Nonlocal Fractional Problems. Cambridge: Cambridge University Press, 2016 [31] Nezza Di E, Palatucci G, Valdinoci E.Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136 : 521-573 [32] Niu M, Tang Z.Least energy solutions for nonlinear Schrüodinger equation involving the fractional Laplacian and critical growth. Discrete Contin Dyn Syst Ser A, 2017, 37: 3963-3987 [33] Rabinowitz P H.On a class of nonlinear Schrüodinger equations. Z Angew Math Phys, 1992 43: 270-291 [34] Shang X, Zhang J.Ground states for fractional Schrüodinger equations with critical growth. Nonlinearity, 2014, 27: 187-207 [35] Secchi S.Ground state solutions for nonlinear fractional Schrüodinger equations in RN. J Math Phys, 2013, 54: 031501 [36] Secchi S.On fractional Schrüodinger equations in RN without the Ambrosetti-Rabinowitz condition. Topol Method Nonl Anal, 2016, 47: 19-41 [37] Struwe M. Variational Methods.Berlin: Springer-Verlag, 1996 [38] Willem M. Minimax Theorems. Boston: Birkhüauser, 1996 [39] Yan S, Yang J, Yu X.Equations involving fractional Laplacian operator: Compactness and application. J Funct Anal, 2015, 269: 47-79 [40] Yang P, Liu J, Tang C.Ground state solutions for non-local fractional Schrodinger equations. Electron J Differ Eq, 2015, 223: 1-16 |