[1] Berkovits L, Kinnunen J, Martell J M.Oscillation estimates, self-improving results and good-λ inequalities. J Funct Anal, 2016, 270(9): 3559-3590 [2] Betancor J J, Duong X T, Li J, et al.Product Hardy, BMO spaces and iterated commutators associated with Bessel Schrödinger operators. Indiana Univ Math J, 2019, 68(1): 247-289 [3] Bourdaud G, Lanza de Cristoforis M, Sickel W. Functional calculus on BMO and related spaces. J Funct Anal, 2002, 189(2): 515-538 [4] Bourdaud G, Moussai M, Sickel W.A necessary condition for composition in Besov spaces. Complex Var Elliptic Equa, 2020, 65(1): 22-39 [5] Bourdaud G, Moussai M, Sickel W.Composition operators acting on Besov spaces on the real line. Ann Mat Pura Appl, 2014, 193(5): 1519-1554 [6] Bourdaud G, Moussai M, Sickel W.Composition operators on Lizorkin-Triebel spaces. J Funct Anal, 2010, 259(5): 1098-1128 [7] Bourgain J, Brezis H, Mironescu P.A new function space and applications. J Eur Math Soc, 2015, 17(9): 2083-2101 [8] Brezis H.How to recognize constant functions. A connection with Sobolev spaces. Uspekhi Mat Nauk, 2002, 57(4): 59-74; Translation in Russian Math Surveys, 2002, 57(4): 693-708 [9] Brezis H, Van Schaftingen J, Yung P L.A surprising formula for Sobolev norms. Proc Natl Acad Sci USA, 2021, 118(8): e2025254118 [10] Campanato S.Proprietà di una famiglia di spazi funzionali. Ann Scuola Norm Sup Pisa Cl Sci, 1964, 18(3): 137-160 [11] Chen P, Duong X T, Li J, et al.BMO spaces associated to operators with generalised Poisson bounds on non-doubling manifolds with ends. J Differential Equations, 2021, 270: 114-184 [12] Chen P, Duong X T, Song L, Yan L.Carleson measures, BMO spaces and balayages associated to Schrödinger operators. Sci China Math, 2017, 60(11): 2077-2092 [13] Dafni G, Hytönen T, Korte R, Yue H.The space JNp: Nontriviality and duality. J Funct Anal, 2018, 275(3): 577-603 [14] Dafni G, Xiao J.Some new tent spaces and duality theorems for fractional Carleson measures and $Q_{\alpha}(\mathbb{R}^{n})$. J Funct Anal, 2004, 208(2): 377-422 [15] Duong X T, Li H, Li J, Wick B D.Lower bound of Riesz transform kernels and commutator theorems on stratified nilpotent Lie groups. J Math Pures Appl, 2019, 124: 273-299 [16] Duong X T, Li J, Sawyer E, et al.A two weight inequality for Calderón-Zygmund operators on spaces of homogeneous type with applications. J Funct Anal, 2021, 281(9): 109190 [17] Duong X T, Li J, Wick B D, Yang D. Characterizations of product Hardy spaces in Bessel setting. J Fourier Anal Appl, 2021, 27(2): Art 24 [18] Duong X T, Yan L.Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J Amer Math Soc, 2015, 18(4): 943-973 [19] Essén M, Janson S, Peng L, Xiao J.Q spaces of several real variables. Indiana Univ Math J, 2000, 49(2): 575-615 [20] Jia H, Tao J, Yang D, et al.Special John-Nirenberg-Campanato spaces via congruent cubes. Sci China Math, 2022, 65(2): 359-420 [21] Jia H, Tao J, Yang D, et al. Boundedness of Calderón-Zygmund operators on special John-Nirenberg- Campanato and Hardy-type spaces via congruent cubes. Anal Math Phys, 2022, 12(1): Art 15 [22] Jia H, Tao J, Yang D, et al.Boundedness of fractional integrals on special John-Nirenberg-Campanato and Hardy-type spaces via congruent cubes. Fract Calc Appl Anal, 2022, 25(6): 2446-2487 [23] Jia H, Yang D, Yuan W, Zhang Y. Estimates for Littlewood-Paley operators on ball Campanato-type function spaces. Results Math, 2023, 78(1): Art 37 [24] John F, Nirenberg L.On functions of bounded mean oscillation. Comm Pure Appl Math, 1961, 14: 415-426 [25] Koskela P, Xiao J, Zhang Y, Zhou Y.A quasiconformal composition problem for the Q-spaces. J Eur Math Soc, 2017, 19(4): 1159-1187 [26] Li J,Wick B D.Characterizations of $H^{1}_{\Delta N}(\mathbb{R}^{n})$ and $BMO_{\Delta N}(\mathbb{R}^{n})$ via weak factorizations and commutators. J Funct Anal, 2017, 272(12): 5384-5416 [27] Peng L Z, Yang Q X.Predual spaces for Q spaces. Acta Math Sci, 2009, 29B(2): 243-250 [28] Reimann H M.Functions of bounded mean oscillation and quasiconformal mappings. Comment Math Helv, 1974, 49: 260-276 [29] Runst T, Sickel W.Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Berlin: Walter de Gruyter, 1996 [30] Tao J, Xue Q, Yang D, Yuan W. XMO and weighted compact bilinear commutators. J Fourier Anal Appl, 2021, 27(3): Art 60 [31] Tao J, Yang D, Yuan W.A survey on function spaces of John-Nirenberg type. Mathematics, 2021, 9(18): 2264 [32] Tao J, Yang D, Yuan W.Vanishing John-Nirenberg spaces. Adv Calc Var, 2022, 15(4): 831-861 [33] Tao J, Yang D, Yuan W.John-Nirenberg-Campanato spaces. Nonlinear Anal, 2019, 189: 111584 [34] Xiao J.$Q_{\alpha}$ Analysis on Euclidean Spaces. Berlin: De Gruyter, 2019 [35] Xiao J.The transport equation in the scaling invariant Besov or Essén-Janson-Peng-Xiao space. J Differential Equations, 2019, 266(11): 7124-7151 [36] Xiao J, Zhou Y.A reverse quasiconformal composition problem for $Q_{\alpha}(\mathbb{R}^{n})$. Ark Mat, 2019, 57(2): 451-469 [37] Yang S, Chang D C, Yang D, Yuan W.Weighted gradient estimates for elliptic problems with Neumann boundary conditions in Lipschitz and (semi-)convex domains. J Differential Equations, 2020, 268(6): 2510-2550 [38] Yue H.A fractal function related to the John-Nirenberg inequality for $Q_{\alpha}(\mathbb{R}^{n})$. Canad J Math, 2010, 62(5): 1182-1200 [39] Yue H, Dafni G.A John-Nirenberg type inequality for $Q_{\alpha}(\mathbb{R}^{n})$. J Math Anal Appl, 2009, 351(1): 428-439 |