[1] de Almeida M F, Ferreira L C F. On the well-posedness and large time behavior for Boussinesq equations in Morrey spaces. Differential Integral Equations, 2011, 24(7/8): 719–742 [2] Banquet C, Villamizar-Roa E J. Existence theory for the Boussinesq equation in modulation spaces. Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51: 1057–1082 [3] Bergh J, Löfström J. Interpolation Spaces. An Introduction. Grundlehren der mathematischen Wissenschaften. Berlin: Springer, 1976 [4] Bogovski M E. Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl Akad Nauk SSSR, 1979, 248(5): 1037–1040 [5] Borchers W, Sohr H. On the equations rotv = g and divu = f with zero boundary conditions. Hokkaido Math J, 1990, 19(1): 67–87 [6] Brandolese L, Schonbek M E. Large time decay and growth for solutions of a viscous Boussinesq system. Trans Amer Math Soc, 2012, 364(10): 5057–5090 [7] Borchers W, Sohr H. On the semigroup of the Stokes operator for exterior domains in Lq-spaces. Math Z, 1987, 196: 415–425 [8] Borchers W, Miyakawa T. On stability of exterior stationary Navier-Stokes flows. Acta Math, 1995, 174: 311–382 [9] Cannon J R, DiBenedetto E. The initial value problem for the Boussinesq equations with data in Lp//Rautmann R. Approximation Methods for Navier-Stokes Problems, Lect Notes in Math. 771. Berlin: Springer-Verlag, 1980: 129–144 [10] Chen Z-M, Kagei Y, Miyakawa T. Remarks on stability of purely conductive steady states to the exterior Boussinesq problem. Adv Math Sci Appl, 1992, 1/2: 411–430 [11] Ferreira L C F, Villamizar-Roa E J. Well-posedness and asymptotic behaviour for the convection problem in $\mathbb{R}^n$. Nonlinearity, 2006, 19(9): 2169–2191 [12] Ferreira L C F, Villamizar-Roa E J. Existence of solutions to the convection problem in a pseudomeasure-type space. Proc R Soc Lond Ser A Math Phys Eng Sci, 2008, 464(2096): 1983–1999 [13] Ferreira L C F, Villamizar-Roa E J. On the stability problem for the Boussinesq equations in weak-Lpspaces. Commun Pure Appl Anal May, 2010, 9(3): 667–684 [14] Fife P C, Joseph D D. Existence of convective solutions of the generalized Bernard problem which are analytic in their norm. Arch Rational Mech Anal, 1969, 33: 116–138 [15] Geissert M, Hieber M, Nguyen T H. A general approach to time periodic incompressible viscous fluid flow problems. Arch Rational Mech Anal, 2016, 220: 1095–1118 [16] Giga Y, Sohr H. On the Stokes operator in exterior domains. J Fac Sci Univ Tokyo, 1989, 36: 313–333 [17] Ha V T N, Huy N T, Mai V T. Parabolic evolution equations in interpolation spaces: boundedness, stability, and applications. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 2020, 71(39): 1–17 [18] Hieber M, Huy N T, Seyfert A. On periodic and almost periodic solutions to incompressible viscous Fluid flow problems on the Whole line//Mathematics for Nonlinear Phenomena — Analysis and Computation. Springer, 2017: 51–81 [19] Ishige K. Gradient estimates for the heat equation in the exterior domains under the Neumann boundary condition. Differential Integral Equations, 2009, 22: 401–410 [20] Nguyen T H. Periodic motions of Stokes and Navier-Stokes flows around a rotating obstacle. Arch Ration Mech Anal, 2014, 213: 689–703 [21] Huy N T, Ha V T N, Xuan P T. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Commun Pure Appl Anal, 2016, 15(6): 2103–2116 [22] Huy N T, Duoc T V, Ha V T N, Mai V T. Boundedness, almost periodicity and stability of certain Navier-Stokes flows in unbounded domains. J Differ Equ, 2017, 263(12): 8979–9002 [23] Hishida T. Asymptotic behavior and stability of solutions to the exterior convection problem. Nonlinear Anal, 1994, 22: 895–925 [24] Hishida T. Global existence and exponential stability of convection. J Math Anal Appl, 1995, 196: 699–721 [25] Hishida T. On a class of stable steady flow to the exterior convection problem. J Differ Equ, 1997, 141(1): 54–85 [26] Joseph D. Stability of Fluid Motion. Berlin: Springer-Verlag, 1976 [27] Kato T. Strong Lp solutions of the Navier-Stokes equations in Rm with applications to weak solutions. Mathematische Zeitschrift, 1984, 187: 471–480 [28] Karch G, Prioux N. Self-similarity in viscous Boussinesq equations. Proc Amer Math Soc, 2008, 136(3): 879–888 [29] Kozono H, Yamazaki M. Exterior problem for the stationary Navier-Stokes equations in the Lorentz space. Math Ann, 1998, 310(2): 279–305 [30] Kozono H, Nakao M. Periodic solution of the Navier-Stokes equations in unbounded domains. Tôhoku Math J, 1996, 48: 33–50 [31] Lukaszewicz G, Ortega-Torres E E, Rojas-Medar M A. Strong periodic solutions for a class of abstract evolution equations. Nonli Anal, 2003, 54(6): 1045–1056 [32] Liu X, Li Y. On the stability of global solutions to the 3D Boussinesq system. Nonli Anal, 2014, 95: 580–591 [33] Morimoto H. Non-stationary Boussinesq equations. Proc Japan Acad Ser A Math Sci, 1991, 67(5): 159–161 [34] Nakao E. On time-periodic solutions to the Boussinesq equations in exterior domains. J Math Anal Appl, 2020, 482(2): 123537 [35] Yamazaki M. Solutions in Morrey spaces of the Navier-Stokes equation with time-dependent external force. Funkcial Ekvac, 2000, 43: 419–460 [36] Yamazaki M. The Navier-Stokes equations in the weak-Ln space with time-dependent external force. Math Ann, 2000, 317: 635–675 [37] Taylor M. Partial Differential Equations III, Nonlinear Equations. 2nd ed. New York, Dordrecht, Heidelberg, London: Springer, 2011 [38] Villamizar-Roa E J, Rodriguez-Bellido M A, Rojas-medar M A. Periodic solutions in unbounded domains for the Boussinesq system. Acta Mathematica Sinica, English Series, 2010, 26(5): 837–862 |