[1] Abatangelo N. A remark on nonlocal Neumann conditions for the fractional Laplacian. Arch Math (Basel), 2020, 114(6): 699–708 [2] Barrios B, Montoro L, Peral I, Soria F. Neumann conditions for the higher order s-fractional Laplacian (-Δ)su with s > 1. Nonlinear Anal TMA, 2020, 193: 111368 [3] Bahrouni S, Salort A M. Neumann and Robin type boundary conditions in fractional Orlicz-Sobolev spaces. ESAIM Control Optim Calc Var, 2021, 27: S15 [4] Bucur C, Valdinoci E. Nonlocal Diffusion and Applications. Springer, 2016 [5] Dipierro S, Proietti Lippi E, Valdinoci E. Linear theory for a mixed operator with Neumann conditions. Asymptot Anal, 2021, Pre-press: 1–24 [6] Dipierro S, Ros-Oton X, Valdinoci E. Nonlocal problems with Neumann boundary conditions. Rev Mat Iberoam, 2017, 33(2): 377–416 [7] Del Pezzo L M, Rossi J, Saintier N, Salort A. An optimal mass transport approach for limits of eigenvalue problems for the fractional p-Laplacian. Adv Nonlinear Anal, 2015, 4(3): 235–249 [8] Del Pezzo L M, Salort A M. The first non-zero Neumann p-fractional eigenvalue. Nonlinear Anal TMA, 2015, 118: 130–143 [9] Del Pezzo L M, Rossi J D, Salort A M. Fractional eigenvalue problems that approximate Steklov eigenvalue problems. Proc Roy Soc Edinburgh Sect A, 2018, 148(3): 499–516 [10] Du Q, Gunzburger M, Lehoucq R B, Zhou K. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math Models Methods Appl Sci, 2013, 23(3): 493–540 [11] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5): 521–573 [12] Granero-Belinchón R. On a drift-diffusion system for semiconductor devices. Ann Henri poincaré, 2016, 17(12): 3474–3498 [13] Jiang K R, Ling Z, Liu Z H. Global existence and asymptotic behavior of the fractional chemotaxis system with signal-dependent sensitivity. Comput Math Appl, 2019, 78(10): 3450–3470 [14] Mizoguchi N. Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane. Calc Var Partial Differential Equations, 2013, 48(3/4): 491–505 [15] Mugnai D, Proietti Lippi E. Neumann fractional p-Laplacian: eigenvalues and existence results. Nonlinear Anal TMA, 2019, 188: 455–474 [16] Mugnai D, Proietti Lippi E. Linking over cones for the Neumann fractional p-Laplacian. J Differential Equations, 2021, 271: 797–820 [17] Mugnai D, Pinamonti A, Vecchi E. Towards a Brezis-Oswald-type result for fractional problems with Robin boundary conditions. Calc Var Partial Differential Equations, 2020, 59 (2): art 43 [18] Mugnai D, Perera K, Proietti Lippi E. A priori estimates for the fractional p-Laplacian with nonlocal Neumann boundary conditions and applications. Comm Pure Appl Anal, 2022, 21(1): 275–292 [19] Pao C V. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press, 1992 [20] Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60(1): 67–112 [21] Wang P Y, Niu P C. A priori bounds and existence of positive solutions for weighted fractional systems. Acta Math Sci, 2021, 41B(5): 1547–1568 [22] Youssfi A, Ould Mohamed Mahmoud G. On singular equations involving fractional Laplacian. Acta Math Sci, 2020, 40B(5): 1289–1315 |