[1] Bauschke H H, Combettes P L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. New York:Springer, 2011 [2] Cai G, Dong Q L, Peng Y. Strong convergence theorems for solving variational inequality problems with pseudo-monotone and non-Lipschitz operators. J Optim Theory Appl, 2021, 188:447-472 [3] Cottle R W, Yao J C. Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 75:281-295 [4] Censor Y, Gibali A, Reich S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148:318-335 [5] Censor Y, Gibali A, Reich S. Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim Meth Softw, 2011, 26:827-845 [6] Censor Y, Gibali A, Reich S. Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space. Optimization, 2012, 61:1119-1132 [7] Censor Y, Gibali A, Reich S. Algorithms for the split variational inequality problem. Numer Algorithms, 2012, 59:301-323 [8] Ceng L C, Hadjisavvas N, Wong N C. Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J Glob Optim, 2010, 46:635-646 [9] Ceng L C, Teboulle M, Yao J C. Weak convergence of an iterative method for pseudo-monotone variational inequalities and fxed-point problems. J Optim Theory Appl, 2010, 146:19-31 [10] Cegielski A. Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics. Vol 2057. Berlin:Springer, 2012 [11] Denisov S V, Semenov V V, Chabak L M. Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern Syst Anal, 2015, 51:757-765 [12] Fichera G. Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad Naz Lincei, VIII Ser, Rend, Cl Sci Fis Mat Nat, 1963, 34:138-142 [13] Fichera G. Problemi elastostatici con vincoli unilaterali:il problema di Signorini con ambigue condizioni al contorno. Atti Accad Naz Lincei, Mem, Cl Sci Fis Mat Nat, Sez I, VIII Ser, 1964, 7:91-140 [14] Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York:Marcel Dekker, 1984 [15] Harker P T, Pang J S. A damped-Newton method for the linear complementarity problem. Lect Appl Math, 1990, 26:265-284 [16] He S N, Tian H L. Selective projection methods for solving a class of variational inequalities. Numer Algorithms, 2019, 80:617-634 [17] Hieu D V, Cholamjiak P. Modified extragradient method with Bregman distance for variational inequalities. Appl Anal, 2020. DOI:10.1080/00036811.2020.1757078 [18] Khanh P D. A modified extragradient method for infinite-dimensional variational inequalities. Acta Math Vietnam, 2016, 41:251-263 [19] Kraikaew R, Saejung S. Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J Optim Theory Appl, 2014, 163:399-412 [20] Korpelevich G M. The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody, 1976, 12:747-756 [21] Maingé P E. A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J Control Optim, 2008, 47:1499-1515 [22] Maingé P E, Gobinddass M L. Convergence of one-step projected gradient methods for variational inequalities. J Optim Theory Appl, 2016, 171:146-168 [23] Malitsky Y V, Semenov V V. A hybrid method without extrapolation step for solving variational inequality problems. J Glob Optim, 2015, 61:193-202 [24] Malitsky Y V. Projected reflected gradient methods for monotone variational inequalities. SIAM J Optim, 2015, 25:502-520 [25] Moudafi A. Viscosity approximation methods for fixed points problems. J Math Anal Appl, 2000, 241:46-55 [26] Liu H, Yang J. Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput Optim Appl, 2020, 77:491-508 [27] Nadezhkina N, Takahashi W. Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J Optim, 2006, 16:1230-1241 [28] Nadezhkina N, Takahashi W. Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J Optim Theory Appl, 2006, 128:191-201 [29] Shehu Y, Cholamjiak P. Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo, 2019, 56. https://doi.org/10.1007/s10092-018-0300-5 [30] Shehu Y, Dong Q L, Jiang D. Single projection method for pseudo-monotone variational inequality in Hilbert spaces. Optimization, 2019, 68:385-409 [31] Solodov M V, Svaiter B F. A new projection method for variational inequality problems. SIAM J Control Optim, 1999, 37:765-776 [32] Thong D V, Vuong P T. Modified Tseng's extragradient methods for solving pseudo-monotone variational inequalities. Optimziation, 2019, 68:2207-2226 [33] Thong D V, Hieu D V. Weak and strong convergence theorems for variational inequality problems. Numer Algorithms, 2018, 78:1045-1060 [34] Thong D V, Hieu D V. Modified Tseng's extragradient algorithms for variational inequality problems. J Fixed Point Theory Appl, 2018, 20:152. https://doi.org/10.1007/s11784-018-0634-2 [35] Thong D V, Vinh N T, Cho Y J. A strong convergence theorem for Tseng's extragradient method for solving variational inequality problems. Optim Lett, 2020, 14:1157-1175 [36] Thong D V, Shehu Y, Iyiola O S. Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numer Algorithms, 2020, 84:795-823 [37] Tseng P. A modified forward-backward splitting method for maximal monotone mappings. SIAM J Control Optim, 2000, 38:431-446 [38] Vuong P T. On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J Optim Theory Appl, 2018, 176:399-409 [39] Vuong P T, Shehu Y. Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer Algorithms, 2019, 81:269-291 [40] Wang F H, Xu H K. Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng's extragradient method. Taiwanese J Math, 2012, 16:1125-1136 [41] Xiao Y B, Huang N J, Cho Y J. A class of generalized evolution variational inequalities in Banach space. Appl Math Lett, 2012, 25:914-920 [42] Yang J, Liu H. Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer Algorithms, 2019, 80:741-752 [43] Yao Y, Postolache M. Iterative methods for pseudomonotone variational inequalities and fixed point problems. J Optim Theory Appl, 2012, 155:273-287 |