[1] Barnard R W, FitzGerald C H, Gong S. The growth and 1/4 theorems for starlike mappings in Cn. Pacif J Math, 1991, 150:13-22 [2] Barnard R W, FitzGerald C H, Gong S. A distortion theorem of biholomorphic convex mappings in C2. Trans Amer Math Soc, 1994, 344:907-924 [3] Cartan H. Sur la possibilité détendre aux fonctions de plusieurs variables complexes la theorie des fonctions univalents//Montel P. Lecons sur les Fonctions Univalents ou Mutivalents. Paris:Gauthier-Villars, 1933 [4] Goluzin G M. On distortion theorems and coefficients of univalent functions. Mat Sb N S, 1946, 19:183-202(in Russian) [5] Gong S, Liu T S. Distortion theorems for biholomorphic convex mappings on bounded convex circular domains. Chin Ann Math, 1999, 20B:297-304 [6] Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York:Marcel Dekker, 2003 [7] Hamada H. Distortion theorems, limschitz continuity and their applications for Bloch type mappings on bounded symmetric domains in Cn. Ann Acad Sci Fen Math, 2019, 44:1003-1014 [8] Hamada H, Honda T, Kohr G. Trace-order and a distortion theorem for linearly invariant families on the unit ball of a finite dimensional JB*-triple. J Math Anal Appl, 2012, 396:829-843 [9] Hamada H, Kohr G. Growth and distortion results for convex mappings in infinite dimensional spaces. Complex Variables and Elliptic Equations, 2002, 47:291-301 [10] Liu T S, Liu X S. On the precise growth, covering, and distortion theorems for normalized biholomorphic mappings. J Math Anal Appl, 2004, 295:404-417 [11] Liu T S, Tang X M. Distortion theorems at extreme points for biholomorphic starlike mappings on the unit ball. Chin Ann Math, 2016, 37A:47-54(in Chinese) [12] Liu T S, Wang J F, Lu J. Distortion theorems for starlike mappings in several complex variables. Taiwanese J Math, 2011, 15:2601-2608 [13] Liu T S, Zhang W J. A distortion theorem of biholomorphic convex mappings in Cn. Chin Ann Math, 1999, 20A:505-512(in Chinese) [14] Liu X S, Liu T S. On the sharp distortion theorems for a subclass of starlike mappings in several complex variables. Taiwanese J Math, 2015, 19:363-379 [15] Liu X S, Liu T S. Sharp distortion theorems for a subclass of biholomorphic mappings which have a parametric representation in several complex variables. Chin Ann Math, 2016, 37B:553-570 [16] Pfaltzgraff J A. Distortion of locally biholomorphic maps of n-ball. Complex Variables and Elliptic Equations, 1997, 33:239-253 [17] Pfaltzgraff J A, Suffridge T J. Linear invariance, order and convex maps in Cn. Complex Variables and Elliptic Equations, 1999, 40:35-50 |