[1] Arvanitoyeorgos A, Dzhepko V V, Nikonorov Y G. Invariant Einstein metrics on some homogeneous spaces of classical Lie groups. Canad J Math, 2009, 61(6):51-61 [2] Arvanitoyeorgos A, Mori K, Sakane Y. Einstein metrics on compact Lie groups which are not naturally reductive. Geom Dedicate, 2012, 160(1):261-285 [3] Arvanitoyeorgos A, Sakane Y, Statha M. New Einstein metrics on the Lie group SO(n) which are not naturally reductive. Geom Imaging Comput, 2015, 2(2):77-108 [4] Arvanitoyeorgos A, Sakane Y, Statha M. Einstein metrics on the symmetric group which are not naturally reductive//Current Developments in Differential Geometry and its Related Fields. Proceedings of the 4th International Colloquium on Differential Geometry and its Related Fields, Velico Tarnovo, Bulgaria 2014. World Scientific, 2015:1-22 [5] Besse A L. Einstein Manifolds. Berlin:Springer-Verlag, 1986 [6] Bohm C. Homogeneous Einstein metrics and simplicial complexes. J Differential Geom, 2004, 67(1):74-165 [7] Bohm C, Wang M, Ziller W. A variational approach for compact homogeneous Einstein manifolds. Geom Func Anal, 2004, 14(4):681-733 [8] Chen H B, Chen Z Q, Deng S Q. New non-naturally reductive Einstein metrics on Exceptional simple Lie groups. J Geom Phys, 2018, 124:268-285 [9] Chen Z Q, Chen H B. Non-naturally reductive Einstein metrics on Sp(n). Front Math China, 2020, 15(1):47-55 [10] Chen Z Q, Liang K. Non-naturally reductive Einstein metrics on the compact simple Lie group F4. Ann Glob Anal Geom, 2014, 46:103-115 [11] Chrysikos I, Sakane Y. Non-naturally reductive Einstein metrics on exceptional Lie groups. J Geom Phys, 2017, 116:152-186 [12] D' Atri J E, Ziller W. Naturally reductive metrics and Einstein metrics on compact Lie groups. Memoirs Amer Math Soc, 1979, 18(215):1-73 [13] Mori K. Left Invariant Einstein Metrics on SU(n) that are not naturally reductive[Master Thesis]. (in Japanese) Osaka University, 1994; English Translation:Osaka University RPM 96010(preprint series), 1996 [14] Park J S, Sakane Y. Invariant Einstein metrics on certain homogeneous spaces. Tokyo J Math, 1997, 20(1):51-61 [15] Wang M. Einstein metrics from symmetry and bundle constructions//Surveys in Differential Geometry:Essays on Einstein Manifolds. Surv Differ Geom VI. Boston, Ma:Int Press, 1999 [16] Wang M. Einstein metrics from symmetry and bundle constructions:A sequel//Differential Geometry:Under the Influence of S.-S. Chern. Advanced Lectures in Mathematics. Higher Education Press/International Press, 2012, 22:253-309 [17] Wang M, Ziller W. Existence and non-existence of homogemeous Einstein metrics. Invent Math, 1986, 84:177-194 [18] Yan Z L, Deng S Q. Einstein metrics on compact simple Lie groups attached to standard triples. Trans Amer Math Soc, 2017, 369:8587-8605 |