[1] Alvarez-Consul L, Garcia-Prada O. Hitchin-Kobayashi correspondence, quivers, and vortices. Commun Math Phys, 2003, 238(1/2):1-33 [2] Biswas I, Schumacher G. Yang-Mills equation for stable Higgs sheaves. Inter J Math, 2009, 20(5):541-556 [3] Bradlow S B. Vortices in holomorphic line bundles over closed Kähler manifolds. Commun Math Phys, 1990, 135(1):1-17 [4] Bruzzo U, Graña Otero B. Metrics on semistable and numerically effective Higgs bundles. J Reine Angew Math, 2007, 612:59-79 [5] Buchdahl N P. Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math Ann, 1988, 280(4):625-648 [6] De Bartolomeis P, Tian G. Stability of complex vector bundles. J Differ Geom, 1996, 43(2):231-275 [7] Donaldson S K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc London Math Soc, 1985, 3(1):1-26 [8] Donaldson S K. Boundary value problems for Yang-Mills fields. J Geom Phys, 199, 8(1/4):89-122 [9] Hamilton R S. Harmonic Maps of Manifolds with Boundary, Vol 471. Springer, 2006 [10] Hitchin N J. The self-duality equations on a Riemann surface. Proc London Math Soc, 1987, 3(1):59-126 [11] Jacob A, Walpuski T. Hermitian Yang-Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds. Communications in Partial Differential Equations, 2018, 43(11):1566-1598 [12] Kobayashi S. Curvature and stability of vector bundles. Proc Jpn Acad Ser A, 1982, 58(4):158-162 [13] Li J, Yau S T. Hermitian-Yang-Mills Connection on non-Kähler Manifolds//Mathematical Aspects of String Theory. New York:World Scientific, 1987:560-573 [14] Li J Y, Zhang X. Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles. Calc Var, 2015, 52(3/4):783-795 [15] Li J Y, Zhang C, Zhang X. Semi-stable Higgs sheaves and Bogomolov type inequality. Calc Var, 2017, 56(1):1-33 [16] Li J Y, Zhang C, Zhang X. The limit of the Hermitian-Yang-Mills flow on reflexive sheaves. Adv Math, 2018, 325:165-214 [17] Li J Y, Zhang C, Zhang X. A note on curvature estimate of the Hermitian-Yang-Mills flow. Commun Math Stat, 2018, 6(3):319-358 [18] Li Z, Zhang X. Dirichlet problem for Hermitian Yang-Mills-Higgs equations over Hermitian manifolds. J Math Anal Appl, 2005, 310(1):68-80 [19] Lübke M. Stability of Einstein-Hermitian vector bundles. Manuscr Math, 1983, 42(2/3):245-257 [20] Mochizuki T. Kobayashi-Hitchin correspondence for tame harmonic bundles and an application. Astérisque, 2006, 309 [21] Mochizuki T. Kobayashi-Hitchin correspondence for tame harmonic bundles II. Geom Topol, 2009, 13(1):359-455 [22] Narasimhan M S, Seshadri C S. Stable and unitary vector bundles on a compact Riemann surface. Ann Math, 1965, 82:540-567 [23] Ni L. The poisson equation and Hermitian-Einstein metrics on holomorphic vector bundles over complete noncompact Kähler manifolds. Indiana Univ Math J, 2002, 51:679-704 [24] Ni L, Ren H. Hermitian-Einstein metrics for vector bundles on complete Kähler manifolds. Trans Amer Math Soc, 2001, 353(2):441-456 [25] Nie Y, Zhang X. Semistable Higgs bundles over compact Gauduchon manifolds. J Geom Anal, 2018, 28(1):627-642 [26] Simpson C T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J Amer Math Soc, 1988, 1(4):867-918 [27] Siu Y T. Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986, Vol 8. Birkhäuser, 2012 [28] Taylor M E. Partial Differential Equations I (Applied Mathematical Sciences). Vol 115. New York:Springer, 2011 [29] Uhlenbeck K K, Yau S T. On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Commun Pure Appl Math, 1986, 39S(S1):S257-S293 [30] Wang R, Zhang C. Semi-stability for holomorphic pairs on compact Gauduchon manifolds. Communications in Mathematics and Statistics, 2019, 7:191-206 [31] Zhang C, Zhang P, Zhang X. Higgs bundles over non-compact Gauduchon manifolds. arXiv:1804.08994, 2018 [32] Zhang P. Hermitian Yang-Mills Metrics on Higgs bundles over asymptotically cylindrical Kähler manifolds. Acta Mathematica Sinica, English Series, 2019, 35(7):1128-1142 [33] Zhang X. Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds. J Geom Phys, 2005, 53(3):315-335 [34] Zhang X. Hermitian Yang-Mills-Higgs metrics on complete Kähler manifolds. Canad J Math, 2005, 57(4):871-896 |