[1] Bahrouni A, Rǎdulescu V D, Repovš D D. Double phase transonic flow problems with variable growth:nonlinear patterns and stationary waves. Nonlinearity, 2019, 32:2481-2495 [2] Cencelj M, Rǎdulescu V D, Repovš D D. Double phase problems with variable growth. Nonlinear Anal, 2018, 177(Part A):270-287 [3] Gasiński L, Papageorgiou N S. Nonlinear Analysis. Ser Math Anal Appl Vol 9. Boca Raton:Chapman and Hall/CRC Press, Florida, 2006 [4] Jiang Q, Ma S, Paşca D. Existence and multiplicity of solutions for p-Laplacian Neumann problems. Results Math, 2019, 74:67 [5] Mawhin J, Willem M. Critical point theory and Hamiltonian systems. Ser Applied Mathematical Sciences Vol 74. New York:Springer-Verlag, 1988 [6] Motreanu D, Motreanu V V, Papageorgiou N S. Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. New York:Springer, 2014 [7] Papageorgiou N S, Rǎdulescu V D, Repovš D D. Double phase problems and a discontuinity property of the spectrum. Proc Amer Math Soc, 2019, 147(7):2899-2910 [8] Papageorgiou N S, Rǎdulescu V D, Repovš D D. Double-phase problems with reaction of arbitrary growth. Z Angew Math Phys, 2018, 69(4):108 [9] Papageorgiou N S, Rǎdulescu V D, Repovš D D. Nonlinear Analysis-Theory and Methods. Switzerland:Springer Nature, 2019 [10] Papageorgiou N S, Vetro C. Superlinear (p(z), q(z))-equations. Complex Var Elliptic Equ, 2019, 64(1):8-25 [11] Papageorgiou N S, Vetro C, Vetro F. Multiple solutions for (p, 2)-equations at resonance. Discrete Contin Dyn Syst Ser S, 2019, 12(2):347-374 [12] Papageorgiou N S, Vetro C, Vetro F. (p, 2)-equations resonant at any variational eigenvalue. Complex Var Ellipt Equ, 2018, https://doi.org/10.1080/17476933.2018.1508287 [13] Papageorgiou N S, Vetro C, Vetro F. (p, 2)-equations with a crossing nonlinearity and concave terms. Appl Math Optim, 2020, 81(1):221-251 [14] Tanaka M. Generalized eigenvalue problems for (p, q)-Laplacian with indefinite weight. J Math Anal Appl, 2014, 419(2):1181-1192 [15] Tang C L. Solvability of Neumann problem for elliptic equation at resonance. Nonlinear Anal, 2001, 44(3):323-335 [16] Tang C L. Some existence theorems for sublinear Neumann boundary value problem. Nonlinear Anal, 2002, 48(7):1003-1011 [17] Wu X, Tan K K. On existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations. Nonlinear Anal, 2006, 65(7):1334-1347 [18] Zhang Q, Rǎdulescu V D. Double phase anisotropic variational problems and combined effects of reaction and absorption terms. J Math Pures Appl (9), 2018, 118:159-203 |