[1] Chu W, Zhang W. Accelerating Dougall's 5F4-sum and infinite series involving π. Math Comp, 2014, 83(285):475-512 [2] Chu W. Abel's method on summation by parts and hypergeometric series. J Difference Equ Appl, 2006, 12(8):783-798 [3] Chu W. Abel's lemma on summation by parts and basic hypergeometric series. Adv Appl Math, 2007, 39(4):490-514 [4] Bailey W N. Generalized Hypergeometric Series. Cambridge:Cambridge University Press, 1935 [5] Guillera J. Generators of some Ramanujan formulas. Ramanujan J, 2006, 11(1):41-48 [6] Guillera J. Hypergeometric identities for 10 extended Ramanujan-type series. Ramanujan J, 2008, 15(2):219-234 [7] Rainville E D. Special Functions. New York:Macmillan, 1969 [8] Stromberg K R. An Introduction to Classical Real Analysis. California:Wadsworth, INC Belmont, 1981 [9] Gessel I. Finding identities with the WZ method. J Symbolic Comput, 1995, 20(5/6):537-566 [10] Chu W. Inversion techniques and combinatorial identities:A unified treatment for the 7F6-series identities. Collect Math, 1994, 45(1):13-43 [11] Ramanujan S. Modular equations and approximations to π. Quart J Pure Appl Math, 1914, 45:350-372 [12] Zhang W. Common extension of the Watson and Whipple sums and Ramanujan-like p-formulae. Integral Transforms Spec Funct, 2015, 26(8):600-618 [13] Chu W. Asymptotic method for Dougall's bilateral hypergeometric sums. Bull Sci Math, 2007, 131(5):457-468 [14] de Bruijn N G. Asymptotic Methods in Analysis. Amsterdam:North Holland Publ, 1958 [15] Lima F M S. A rapidly converging Ramanujan-type series for Catalan's constant. arXiv:1207.3139v1[math.NT] 13 Jul 2012 [16] Adamchik V. Thirty-three representations for Catalan's constant. https://www.cs.cmu.edu/adamchik/articles/catalan/catalan.htm [17] Bradley D. Representations of Catalan's constant. An unpublished catalog of formulae for the alternating sum of the reciprocals of the odd positive squares, 1998 [18] Yang S. Some properties of Catalan's constant G. Int J Math Educ Sci Technol, 1992, 23:549-556 [19] Finch S R. Mathematical Constants. Cambridge:Cambridge University Press, 2003 [20] Whipple F J W. Some transformations of generalized hypergeometric series. Proc London Math Soc, 1927, 26:257-272 |