[1] Gross E P. Physics of many-particle systems. New York:Gordon and Breach, 1996 [2] Lieb E H, Simon B. The Hartree-Fock theory for Coulomb systems. Comm Math Phys, 1977, 53(3):185-194 [3] Moroz I, Penrose R, Tod P. Spherically-symmetric solutions of the Schrödinger-Newton equations. Classical Quantum Gravity, 1998, 15(9):2733-2742 [4] Penrose R. On gravity's role in quantum state reduction. Gen Rel Grav, 1996, 28(5):581-600 [5] Penrose R. Quantum computation, entanglement and state reduction. R Soc Lond Philos Trans Ser A Math Phys Eng Sci, 1998, 356(1743):1927-1939 [6] Clapp M, Salazar D. Positive and sign changing solutions to a nonlinear Choquard equation. J Math Anal Appl, 2013, 407(1):1-15 [7] Ghimenti M, Van Schaftingen J. Nodal solutions for the Choquard equation. J Funct Anal, 2016, 271(1):107-135 [8] Lions P L. The Choquard equation and related questions. Nonlinear Anal, 1980, 4(6):1063-1072 [9] Ma L, Zhao L. Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation. Arch Rational Mech Anal, 2010, 195(2):455-467 [10] Moroz V, Van Schaftingen J. Groundstates of nonlinear Choquard equations:Existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265(2):153-184 [11] Stuart C. Bifurcation for variational problems when the linearisation has no eigenvalues. J Funct Anal, 1980, 38(2):169-187 [12] Tod P, Moroz I. An analytical approach to the Schrödinger-Newton equations. Nonlinearity, 1999, 12(2):201-216 [13] Moroz V, Van Schaftingen J. Groundstates of nonlinear Choquard equations:Hardy-Littlewood-Sobolev critical exponent. Commun Contemp Math, 2015, 17(5):1550005 [14] Moroz V, Van Schaftingen J. Existence of groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367(9):6557-6579 [15] Li G B, Ye H Y. The existence of positive solutions with prescribed L2-norm for nonlinear Choquard equations. J Math Phys, 2014, 55(12):121501 [16] Bartsch T, Wang Z Q. Existence and multiplicity results for superlinear elliptic problems on RN. Comm Partial Differential Equations, 1995, 20(9/10):1725-1741 [17] Bartsch T, Pankov A, Wang Z Q. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3(4):549-569 [18] Bartsch T, Tang Z. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete Contin Dyn Syst, 2013, 33(1):7-26 [19] Ding Y H, Tanaka K. Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manus Math, 2003, 112(1):109-135 [20] Sato Y, Tanaka K. Sign-changing multi-bump solutions for nonliear Schrödinger equations with steep potential wells. Trans Amer Math Soc, 2009, 361(12):6205-6253 [21] Stuart C, Zhou H S. Global branch of solutions for non-linear schrödinger equations with deepening potential well. Proc Lond Math Soc, 2006, 92(3):655-681 [22] Wang Z P, Zhou H S. Positive solutions for nonlinear Schrödinger equations with deepening potential well. J Eur Math Soc, 2009, 11(3):545-573 [23] Lü D F. Existence and concentration of solutions for a nonlinear Choquard equation. Mediterr J Math, 2015, 12(3):839-850 [24] Alves C O, Nóbrega A B, Yang M B. Multi-bump solutions for Choquard equation with deepening potential well. Cal Var Partial Differential Equations, 2016, 55(3):48 [25] Lieb E H, Loss M. Analysis. 2nd ed. Providence, Rhode Island:American Mathematical Society, 2001 [26] Willem M. Minimax Theorems. Boston:Birkhäuser, 1996 |