[1] Baranger C, Boudin L, Jabin P E, et al. A modeling of biospray for the upper airways. CEMRACS 2004-mathematics and applications to biology and medicine. ESAIM Proc, 2005, 14:41-47 [2] Ballew J. Low Mach number limits to the Navier Stokes Smoluchowski system//Hyperbolic Problems:Theory, Numerics, Applications. AIMS Series on Applied Mathematics, 2014, 8:301-308 [3] Ballew J. Mathematical Topics in Fluid-Particle Interaction[D]. USA:University of Maryland, 2014 [4] Ballew J, Trivisa K. Weakly dissipative solutions and weak-strong uniqueness for the Navier Stokes Smoluchowski system. Nonlinear Anal, 2013, 91:1-19 [5] Berres S, Bürger R, Karlsen K H, et al. Strongly degenerate parabolic hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J Appl Math, 2003, 64(1):41-80 [6] Carrillo J A, GoudonT. Stability and asymptotic analysis of a fluid-particle interaction model. Commun Partial Differ Equ, 2006, 31:1349-1379 [7] Carrillo J A, Karper T, Trivisa K. On the dynamics of a fluid-particle interaction model:the bubbling regime. Nonlinear Anal, 2011, 74:2778-2801 [8] Cho Y, KimH. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscripta Math, 2006, 120:91-129 [9] Chen Y S, Ding S J, Wang W J. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete Contin Dyn Syst, 2016, 36(10):5287-5307 [10] Ding S J, Huang B Y, Lu Y B. Blowup criterion for the compressible fluid-particle interaction model in 3D with vacuum. Acta Mathematica Scientia, 2016, 36B(4):1030-1048 [11] Ding S J, Huang B Y, Wen H Y. Global well-posedness of classical solutions to a fluid-particle interaction model in R3. J Differential Equations, 2017, 263(12):8666-8717 [12] Fang D Y, Zi R Z, Zhang T. Global classical large solutions to a 1D fluid-particle interaction model:The bubbling regime. J Math Phys, 2012, 53:033706 [13] Huang B Y, Ding S J, Wen H Y. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete Contin Dyn Syst S, 2016, 9(6):1717-1752 [14] Ju N. Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Comm Math Phys, 2004, 251:365-376 [15] Kobayashi T, ShibataY. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in R3. Commun Math Phys, 1999, 200:621-659 [16] Li F C, Yu H J. Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc Roy Soc Edinburgh Sect A, 2011, 141:109-126 [17] Matsumura A, Nishida T. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun Math Phys, 1983, 89(4):445-464 [18] Ponce G. Global existence of small solution to a class of nonlinear evolution equations. Nonlin Analysis, 1985, 9:399-418 [19] Ukai S, Yang T, Zhao H J. Convergence rate for the compressible Navier-Stokes equations with external force. J Hyperbolic Differ Eqns, 2006, 3(3):561-574 [20] Vinkovic I, Aguirre C, Simöens S, et al. Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow. Int J Multiph Flow, 2006, 32:344-364 [21] Williams F A. Combustion Theory. Benjamin Cummings Publ, 1985 [22] Williams F A. Spray combustion and atomization. Phys Fluids, 1958, 1:541-555 [23] Wang W J. Large time behavior of solutions to the compressible Navier-Stokes equations with potential force. J Math Anal Appl, 2015, 423:1448-1468 [24] Wang Y J. Decay of the Navier-Stokes-Poisson equations. J Differential Equations, 2012, 253:273-297 |