[1] Agarwal R P, Xu B, Zhang W. Stability of functional equations in single variable. J Math Anal Appl, 2003, 288:852-869 [2] Aiemsomboon L, Sintunavarat W. On a new type of stability of a radical quadratic functional equation using Brzdęk's fixed point theorem. Acta Math Hungar, 2017, 151(1):35-46 [3] Alizadeh Z, Ghazanfari A G. On the stability of a radical cubic functional equation in quasi-β-spaces. J Fixed Point Theory Appl, 2016, 18:843-853 [4] Aoki T. On the stability of the linear transformation in Banach spaces. J Math Soc Japan, 1950, 2:64-66 [5] Bourgin D G. Approximately isometric and multiplicative transformations on continuous function rings. Duke Math J, 1949, 16:385-397 [6] Bourgin D G. Classes of transformations and bordering transformations. Bull Amer Math Soc, 1951, 57:223-237 [7] Brzdęk J. Hyperstability of the Cauchy equation on restricted domains. Acta Math Hungar, 2013, 141(1/2):58-67 [8] Brzdęk J. Remarks on solutions to the functional equations of the radical type. Adv Theory Nonlinear Anal Appl, 2017, 1(2):125-135 [9] Brzdęk J, Ciepliński K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal, 2011, 74:6861-6867 [10] Brzdęk J, Ciepliński K. Hyperstability and superstability. Abstr Appl Anal, 2003, 2013:Article ID 401756 [11] Brzdęk J, Ciepliński K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math Sci, 2018, 38B(2):377-390 [12] Brzdęk J, Fechner W, Moslehian M S, Sikorska J. Recent developments of the conditional stability of the homomorphism equation. Banach J Math Anal, 2015, 9:278-327 [13] Dung N V, Hang V T L. The generalized hyperstability of general linear equations in quasi-Banach spaces. J Math Anal Appl, 2018, 462:131-147 [14] EL-Fassi Iz. On a new type of hyperstability for radical cubic functional equation in non-Archimedean metric spaces. Results Math, 2017, 72:991-1005 [15] EL-Fassi Iz. Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces. J Math Anal Appl, 2017, 455:2001-2013 [16] EL-Fassi Iz. A new type of approximation for the radical quintic functional equation in non-Archimedean (2, β)-Banach spaces. J Math Anal Appl, 2018, 457:322-335 [17] EL-Fassi Iz. On the general solution and hyperstability of the general radical quintic functional equation in quasi-β-Banach spaces. J Math Anal Appl, 2018, 466:733-748 [18] EL-Fassi Iz. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. RACSAM, 2018, https://doi.org/10.1007/s13398-018-0506-z [19] EL-Fassi Iz, Brzdęk J, Chahbi A, Kabbaj S. On hyperstability of the biadditive functional equation. Acta Math Sci, 2017, 37B(6):1727-1739 [20] El-Fassi Iz, Kabbaj S. On the generalized orthogonal stability of the Pexiderized quadratic functional equation in modular space. Math Slovaca, 2017, 67(1):165-178 [21] Gähler S. Lineare 2-normierte Räume. Math Nachr, 1964, 28:1-43(in German) [22] Gähler S. Über 2-Banach-Räume. Math Nachr, 1969, 42:335-347(in German) [23] Gajda Z. On stability of additive mappings. Int J Math Math Sci, 1991, 14:431-434 [24] Găvruta P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl, 1994, 184:431-436 [25] Gordji M E, Khodaei H, Rassias Th M. A Functional Equation Having Monomials and Its Stability. Optimization and Its Applications, 96. Springer, 2014 [26] Hensel K. Über eine neue Begründung der Theorie der algebraischen Zahlen. Jahresber Dtsch Math-Ver, 1897, 6:83-88 [27] Hyers D H. On the stability of the linear functional equation. Proc Nat Acad Sci, USA, 1941, 27:222-224 [28] Katsaras A K, Beoyiannis A. Tensor products of non-Archimedean weighted spaces of continuous functions. Georgian Math J, 1999, 6:33-44 [29] Khodaei H, Eshaghi Gordji M, Kim S S, Cho Y J. Approximation of radical functional equations related to quadratic and quartic mappings. J Math Anal Appl, 2012, 395:284-297 [30] Khrennikov A. Non-Archimedean Analysis:Quantum Paradoxes, Dynamical Systems and Biological Models. Mathematics and Its Applications, 427. Dordrecht:Kluwer Academic, 1997 [31] Maksa G, Páles Z. Hyperstability of a class of linear functional equations. Acta Math Acad Paedagog Nyháazi (NS), 2001, 17:107-112 [32] Moslehian M S, Rassias Th M. Stability of functional equations in non-Archimedean spaces. Appl Anal Discrete Math, 2007, 1:325-334 [33] Nyikos P J. On some non-Archimedean spaces of Alexandrof and Urysohn. Topol Appl, 1999, 91:1-23 [34] Rassias Th M. On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72:297-300 [35] Rassias Th M. On a modified Hyers-Ulam sequence. J Math Anal Appl, 1991, 158:106-113 [36] Rassias Th M, Semrl P. On the behavior of mappings which do not satisfy Hyers-Ulam stability. Proc Amer Math Soc, 1992, 114:989-993 [37] Ulam S M. A Collection of Mathematical Problems. New York:Interscience Publishers, 1960; Reprinted as:Problems in Modern Mathematics. New York:John Wiley & Sons, Inc, 1964 [38] White A. 2-Banach spaces. Math Nachr, 1969, 42:43-60 [39] Xu B, Brzdęk J, Zhang W. Fixed point results and the Hyers-Ulam stability of linear equations of higher orders. Pacific J Math, 2015, 273(2):483-498 |