[1] Batchelor G K. An Introduction To Fluid Dynamics. Cambridge: Cambridge University Press, 1967
[2] Fernández-Cara E. On the approximate and null controllability of the Navier-Stokes equations. SIAM Review, 1999, 41: 269-277
[3] Fernández-Cara E, Guerrero S, Imanuvilov O Yu, Puel J P. Local exact controllability of the Navier-Stokes system. J Math Pures Appl, 2004, 83: 1501-1542
[4] Fernández-Cara E, Guerrero S, Imanuvilov O Yu, Puel J P. Remarks on exact controllability for Stokes and Navier-Stokes systems. Comptes Rendus Mathematique, 2004, 338: 375-380
[5] Fernández-Cara E, Guerrero S, Imanuvilov O Yu, Puel J P. Some Controllability Results for the NDimensional Navier-Stokes and Boussinesq systems with N-1 scalar controls. SIAM J Control Optim, 2006, 45: 146-173
[6] Coron J M. On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESIAM: Control Optimisation and Calculus of Variations, 1996, 1: 35-75
[7] Fabre C. Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems. ESAIM: Control Optimisation and Calculus of Variations, 1996, 1: 267-302
[8] Fursikov A V, Imanuvilov O Yu. On approximate controllability of the Stokes system. Annales de la Faculté des Sciences de Toulouse, 1999, 2: 205-232
[9] Fursikov A V, Imanuvilov O Yu. Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Mathematical Surveys, 1999, 54: 565-618
[10] Gozzi F, Loreti P. Regularity of the minimum time function and minimum energy problems: The linear case. SIAM J Control Optim, 1999, 37: 1195-1221
[11] Imanuvilov O Yu. Remarks on exact controllability for the Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, 2001, 6: 39-72
[12] Wang G, Xu Y. Equivalence of three different kinds of optimal control problems for heat equations and its applications. SIAM J Control Optim, 2013, 51: 848-880
[13] Wang G, Zuazua E. On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J Control Optim, 2012, 50: 2938-2958
[14] Yu H. Equivalence of minimal time and minimal norm control problems for semilinear heat equations. Systems and Control Letters, 2014, 73: 17-24
[15] Zhang C. The time optimal control with constraints of the rectangular type for linear time- varying ODEs. SIAM J Control Optim, 2013, 51: 1528-1542
[16] Zhang Y. Two equivalence theorems of different kinds of optimal control problems for Schrödinger equations. ArXiv preprint, arXiv: 1301.6321, 2013 |