[1] Albrecht D, Duong X T, McIntosh A. Operator theory and harmonic analysis. Canberra: Proc Centre Math Analysis, 1996, 14: 77–136
[2] Arendt W, Bu S. The operator valued Marcinkiewicz multiplier theorem and maximal regularity. Math Zeit, 2002, 240: 311–343
[3] Auscher P, et al. The solution of the Kato square root problem for second order elliptic operators on Rn. Ann Math, 2002, 156: 633–654
[4] Berkson E, Gillespie T A. Spectral decompositions and harmonic analysis on UMD Banach spaces. Studia Math, 1994, 112: 13–49
[5] Burkholder D. Martingales and singular integrals in Banach spaces//Johnson W B, Lindenstrauss J. Hand-book of Geometry of Banach Spaces. Vol.I. Elsevier, 2001: 233–269
[6] Chen Z, Sun M. Area integral functions and H1 functional calculus for sectorial operators on Hilbert spaces. Acta Mathematica Scientia, 2013, 33B(4): 989–997
[7] Cl´ement P, De Pagter B, Sukochev F, Witvliet H. Schauder decompositions and multiplier theorems. Studia Math, 2000, 138: 135–163
[8] Cowling M. Harmonic analysis on semigroups. Ann Math, 1983, 117: 267–283
[9] Cowling M, Doust I, McIntosh A, Yagi A. Banach space operators with a bounded H1 functional calculus. J Austr Math Soc Series A, 1996, 60: 51–89
[10] Goldstein J A. Semigroups of linear operators and applications. New York: Oxford University Press, 1985
[11] Kalton N, Weis L. The H1 calculus and sums of closed operators. Math Annalen, 2001, 321: 319–345
[12] Le Merdy C. TheWeiss conjecture for bounded analytic semigroups. J London Math Soc, 2003, 67: 715–738
[13] Le Merdy C. On square functions associated to sectorial operators. Bull Soc Math France, 2004, 132: 137–156
[14] Le Merdy C. Square functions, bounded analytic semigroups, and applications//Perspectives in operator theory. Banach Center Publ 75. Warsaw: Polish Acad Sci, 2007: 191–220
[15] McIntosh A. Operators which have an H1 functional calculus. Proc Centre Math Analysis, Canberra, 1986, 14: 210–231
[16] McIntosh A, Yagi A. Operators of type ! without a bounded H1 functional calculus. Canberra: Proc Centre Math Analysis, 1989, 24: 159–172
[17] Stein E M. Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Princeton: Princeton University Press, 1970
[18] Weis L. A new approach to maximal L p-regularity//Lumer G, Weis L. Proc of the 6th International Conference on Evolution Equations 1998. Marcel Dekker, 2000: 195–214
[19] Weis L. Operator valued Fourier multiplier theorems and maximal regularity. Math Annalen, 2001, 319: 735–758 |