[1] Altay B. On the space of p-summable difference sequences of order m, (1 ≤ p ≤ ∞). Stud Sci Math Hungar, 2006, 43(4): 387–402
[2] Altay B, Ba¸sar F. Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space. J Math Anal Appl, 2007, 336(1): 632–645
[3] Altay B, Ba¸sar F. Some Euler sequence spaces of non-absolute type. Ukrainian Math J, 2005, 57(1): 1–17
[4] Altay B, Ba¸sar F. Some paranormed Riezs sequence spaces of non-absolute type. Southeast Asian Bull Math, (2006), 30(5) 591–608
[5] Altay B, Ba¸sar F. Some paranormed sequence spaces of non-absolute type derived by weighted mean. J Math Anal Appl, 2006, 319(2): 494–508
[6] Altay B, Ba¸sar F. Generalization of the sequence space ?(p) derived by weighted mean. J Math Anal Appl, 2007, 330(1): 174–185
[7] Altay B, Ba¸sar F. Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space. J Math Anal Appl, 2007, 336(1): 632–645
[8] Altay B, Ba¸sar F. The matrix domain and the fine spectrum of the difference operator △ on the sequence space lp, (0 < p < 1). Commun Math Anal, 2007, 2(2): 1–11
[9] Ayd?n C, Ba¸sar F. On the new sequence spaces which include the spaces c0 and c. Hokkaido Math J, 2004, 33(2): 383–398
[10] Ayd?n C, Ba¸sar F. Some new paranormed sequence spaces. Inform Sci, 2004, 160(1–4): 27–40
[11] Ayd?n C, Ba¸sar F. Some new difference sequence spaces. Appl Math Comput, 2004, 157(3): 677–693
[12] Ayd?n C, Ba¸sar F. Some new sequence spaces which include the spaces lp and l1. Demonstratio Math, 2005, 38(3): 641–656
[13] Aydsn C, Ba¸sar, F. Some generalizations of the sequence space apr. Iran J Sci Technol Trans A, Sci, 2006, 30(A2): 175–190
[14] Ba¸sar F. Matrix transformations between certain sequence spaces of Xp and lp. Soochow J Math, 2000, 26(2): 191–204
[15] Ba¸sar F, Kiri¸s¸ci M. Almost convergence and generalized difference matrix. Comput Math Appl, 2011, 61(3): 602–611
[16] Ba¸sar F, C¸ olak R. Almost-conservative matrix transformations. Turk J Math, 1989,13(3): 91–100
[17] Ba¸sar F, Altay B, Mursaleen M. Some generalizations of the space bvp of p-bounded bounded variation sequences. Nonlinear Anal, 2008, 68(2): 273–287
[18] Ba¸sar?r M. On some new sequence spaces and related matrix transformations. Indian J Pure Appl Math, 1995, 26(10): 1003–1010
[19] Boos J. Classical and Modern Methods in Summability. New York: Oxford University Press, 2000
[20] Connor J S. The statistical and strong p-Cesaro convergence of sequences. Analysis, 1988, 8: 47–63
[21] Cooke R G. Infinite Matrices and Sequence Spaces. Macmillan, 1950
[22] C¸ o¸skun H, C¸ akan C, Mursaleen. On the statistical and σ-core. Studia Math, 2003, 154(1): 29–35
[23] Das G. Sublinear functionals and a class of conservative matrices. Bull Inst Math Acad Sinica, 1987, 15: 89–106
[24] Devi S L. Banach limits and infinite matrices. J London Math Soc, 1976, 12: 397–401
[25] Fridy J, Orhan C. Statistical limit superior and limit inferior. Proc Amer Math Soc, 1997, 125: 3625–3631
[26] Kayaduman K, C¸ o¸skun H. On the σ(A)-summability and σ(A)-core. Demonstratio Math, 2007, 40(4): 859–867
[27] Kiri¸s¸ci M, Ba¸sar F. Some new sequence spaces derived by the domain of generalized difference matrix. Comput Math Appl, 2010, 60(5): 1299–1309
[28] Kuttner B. On dual summability methods. Proc Comb Phil Soc, 1972, 71: 67–73
[29] Lorentz G G. A contribution to the theory of divergent series. Acta Math, 1948, 80: 167–190
[30] Lorentz G G, Zeller K. Summation of sequences and summation of series. Proc Camb Phil Soc, 1972, 71: 67–73
[31] Malkowsky E. Recent results in the theory of matrix transformations in sequence spaces. Mat Vesnik, 1997, 49: 187–196
[32] Malkowsky E, Sava¸s E. Matrix transformations between sequence spaces of generalized weighted means. Appl Math Comput, 2004, 147: 333–345
[33] Malkowsky E, Mursaleen, Suantai S. The dual spaces of sets of difference sequences of order m and matrix transformations. Acta Math Sin Eng Ser, 2007, 23(3): 521–532
[34] M´oricz F, Rhoades B E. Some characterizations of almost convergence for single and double sequences. Publ Inst Math Nouv Sèr, 1990, 48(62): 61–68
[35] Mishra S L, Satapathy B, Rath N. Invariant means and σ-core. J Indian Math Soc, 1994, 60: 151–158
[36] Mursaleen. On some new invariant matrix methods of summability. Quart J Math Oxford, 1983, 34(2): 77–86
[37] Ng P -N, Lee P -Y. Ces`aro sequence spaces of non-absolute type. Comment Math Prace Mat, 1978, 20(2): 429–433
[38] Orhan C. Sublinear functionals and Knopp’s core theorem. Internat J Math Math Sci, 1990, 3: 461–468
[39] Polat H, Ba¸sar F. Some Euler spaces of difference sequences of order m. Acta Math Sci, 2007, 27B(2): 254–266
[40] S?dd?qi J A. Infinite matrices summing every almost priodic sequences. Pac J Math, 1971, 39: 235–251
[41] S¸eng¨on¨ul M, Ba¸sar F. Some new Ceso sequence spaces of non-absolute type which include the spaces c0 and c. Soochow J Math, 2005, 31(1): 107–119
[42] Wang C -S. On N¨orlund sequence spaces. Tamkang J Math, 1978, 9: 269–274
[43] Wilansky A. Summability Through Functional Analysis. North-Holland Mathematic Studies 85. New York, Oxford: Amsterdam, 1984 |