数学物理学报(英文版) ›› 2011, Vol. 31 ›› Issue (4): 1383-1388.doi: 10.1016/S0252-9602(11)60325-1

• 论文 • 上一篇    下一篇

ESTIMATES ON EIGENVALUES FOR THE BIHARMONIC OPERATOR ON A BOUNDED DOMAIN IN Hn(−1)

黄广月1,2|李兴校2   

  1. 1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
    2. Department of Mathematics, Henan Normal University, Xinxiang 453007, China
  • 收稿日期:2009-08-13 修回日期:2010-03-29 出版日期:2011-07-20 发布日期:2011-07-20
  • 基金资助:

    This research is supported by NSFC (11001076); Project of Henan Provincial department of Sciences and Technology(092300410143); and NSF of Henan Provincial Education Department (2009A110010; 2010A110008).

ESTIMATES ON EIGENVALUES FOR THE BIHARMONIC OPERATOR ON A BOUNDED DOMAIN IN Hn(−1)

 HUANG Guang-Yue1,2, LI Xin-Xiao2   

  1. 1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
    2. Department of Mathematics, Henan Normal University, Xinxiang 453007, China
  • Received:2009-08-13 Revised:2010-03-29 Online:2011-07-20 Published:2011-07-20
  • Supported by:

    This research is supported by NSFC (11001076); Project of Henan Provincial department of Sciences and Technology(092300410143); and NSF of Henan Provincial Education Department (2009A110010; 2010A110008).

摘要:

In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues independent of the domains.

关键词: universal inequality, eigenvalue, hyperbolic space, clamped plate problem

Abstract:

In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues independent of the domains.

Key words: universal inequality, eigenvalue, hyperbolic space, clamped plate problem

中图分类号: 

  • 35P15