[1] Hua L K. Harmonic analysis of functions of several complex variables in the classical domains. Translations of Mathematical Monographs 6. Providence, RI: Amer Math Soc, 1963
[2] Liu T S. The growth theorems and covering theorems for biholomorphic mappings on classical domains[D]. Hefei: University of Science and Technology of China, 1989 (In Chinese)
[3] Liu X S, Liu T S. An inequality of homogeneous expansion for biholomorphic quasi-convex mappings on the unit polydisk and its application. Acta Math Sci, 2009, 29B(1): 201–209
[4] Liu X S. On the quasi-convex mappings on the unit polydisk in Cn. J Math Anal Appl, 2007, 335: 43–55
[5] Hamada H, Honda T, Kohr G. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J Math Anal Appl, 2006, 317: 302–319
[6] Anderson J M, Rovnyak J. On generalized Schwarz-Pick estimates. Mathematika, 2006, 53: 161–168
[7] Ruscheweyh St. Two remarks on bounded analytic functions. Serdica, 1985, 11: 200–202
[8] Beneteau C, Dahlner A, Khavinson D. Remarks on the Bohr phenomenon. Comput Methods Funct Theory, 2004, 4: 1–19
[9] Avkhadiev F G, Wirths K J. Schwarz-Pick inequalities for derivatives of arbitrary order. Constr Approx, 2003, 19: 265–277
[10] Maccluer B, Stroethoff K, Zhao R. Generalized Schwarz-Pick estimates. Proc Amer Math Soc, 2002, 131: 593–599
[11] Zhang M Z. Generalized Schwarz-Pick Lemma. Acta Math Sin, Chin Ser, 2006, 49(3): 613–616
[12] Ghatage P, Zheng D C. Hyperbolic derivatives and generalized Schwarz-Pick estimates. Proc Amer Math Soc, 2004, 132: 3309–3318
[13] Dai S Y, Pan Y F. Note on Schwarz-Pick estimates for bounded and positive real part analytic functions. Proc Amer Math Soc, 2008, 136: 635–640
[14] Chen Z H, Liu Y. Schwarz-Pick estimates for bounded holomorphic functions in the unit ball of Cn. Acta Math Sin, Engl Ser, 2010, 26(5): 901–908
[15] Anderson J M, Dritschel M A, Rovnyak J. Schwarz-Pick inequalities for the Schur-Agler class on the polydisk and unit ball. Comput Meth Funct Theory, 2008, 8(2): 339–361
[16] Dai S Y, Chen H H, Pan Y F. The Schwarz-Pick lemma of high order in several variables. Michigan J Math, 2010, 59(3): 517–533
[17] Dai S Y, Chen H H, Pan Y F. The high order Schwarz-Pick lemma on complex Hilbert ball. Sci China Math, 2010, 53(10): 2649–2656
[18] Abraham R, Marsden J E, Ratiu T. Manifolds, Tensor Analysis, and Applications. New York: Springer-Verlag, 1988
[19] Wang J F, Lin T S, Tang X M. Distortion theorems for Bloch mappings on the unit polydisc Dn. Acta Math Sci, 2010, 30B(5): 1661–1668 |