[1] Arnold D N, Brezzi F, Douglas Jr J. PEERS: A new mixed finite element for planar elasticity. Japan J Appl Math, 1984, 1: 347--367
[2] Arnold D N, Winther R. Mixed finite elements for elasticity. Numer Math, 2002, 92: 401--419
[3] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 1994
[4] Brenner S C, Sung L Y. Linear finite element methods for planar linear elasticity. Math Comp, 1992, 59: 321--338
[5] Clement P. Approximation by finite element functions using local regularization. RAIRO Anal Numer, 1975, 9: 77--84
[6] Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
[7] Crouzeix M, Raviart D A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO, 1973, R-3: 33--75
[8] Falk R S. Nonconforming finite element methods for the equations of linear elasticity. Math Comp, 1991, 57: 529--550
[9] Lee L O, Lee J, Sheen D. A lacking-free nonconforming finite element method for planar linear elasticity. Adv Comp Math, 2003, 19: 277--291
[10] Qi H. Locking-free finite element methods for linear elasticity with pure displacement boundary condition [D]. Beijing: Academy of Mathematics and Systems Science, CAS, 2002(in Chinese)
[11] Stenberg R. A family of mixed finite elements for the elasticity problem. Numer Math, 1988, 53: 513--538
[12] Wang L H, Qi H. A locking-free finite element scheme for the planar elasticity problem. Math Numer Sinica, 2002, 24: 243--256 (in Chinese)
[13] Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J Numer Anal, 1997, 34: 640--663
[14] Chen S C, Shi D Y. Accuracy analysis for quasi-wilson element. Acta Math Sci, 2000, 20B(1): 44--48 |