[1] Beirão da Veiga H. A new regularity class for the Navier-Stokes equations in Rn. Chin Ann Math, 1995, 16: 407--412
[2] Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm Pure Appl Math, 1982, 35: 771--831
[3] Chen Z M, Xin Z. Homogeneity criterion for the Navier-Stokes equations in the whole spaces. J Math Fluid Mech, 2001, 3: 152--182
[4] Dong B Q, Chen Z M. Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components. J Math Anal Appl, 2008, 338: 1--10
[5] Dong B Q, Zhang Z. The BKM criterion for the 3D Navier-Stokes equations via two velocity components. Nonlinear Analysis: Real
World Applications, 2010, 11: 2415--2421
[6] Fan J, Jiang S, Ni G. On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure. J Differential Equations, 2008, 244: 2963--2979
[7] Giga Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 1986, 62: 186--212
[8] He C. Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electronic Journal of Differential
Equations, 2002, 29: 1--13
[9] Kukavica I, Ziane M. One component regularity for the Navier-Stokes equations. Nonlinearity, 2006, 19: 453--469
[10] Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Fluids. New York: Gorden Brech, 1969
[11] Lemariè-Rieusset P G. Recent Developments in the Navier-Stokes Problem. Chapman Hall/CRC, Boca Raton, FL, 2002
[12] Leray J. Essai sur les le mouvement d'un liquide visqueux emplissant l'espace. Acta Math, 1934, 63: 193--248
[13] O'Neil R. Convolution operators and L(p, q) spaces. Duke Math J, 1963, 30: 129--142
[14] Penel P, Pokorn\'y M. Some new regularity criteria for the Navier--Stokes equations containing gradient of the velocity. Appl Math, 2004, 49: 483--493
[15] Pokorn'y M. On the result of He concerning the smoothness of solutions to the Navier-Stokes equations. Electron J Diff Equs,
2003, 10: 1--8
[16] Serrin J. On the interior regularity of weak solutions of the Navier Stokes equations. Arch Rational Mech Anal, 1962, 9: 187--195
[17] Struwe M. On partial regularity results for the Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 437--458
[18] Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam: North-Holland, 1978
[19] Zhang X. A regularity criterion for the solutions of 3D Navier-Stokes equations. J Math Anal Appl, 2008, 346: 336--339
[20] Zhou Y. A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl Anal, 2002, 9: 563--578
[21] Zhou Y. A new regularity criterion for weak solutions to the Navier-Stokes equations. J Math Pures Appl, 2005, 84: 1496--1514 |