[1] Bogolubsky I L. Some examples of inelastic soliton interaction. Comput Phys Commun, 1977, 13(2): 49--55
[2] Clarcson P A, LeVeque R J, Saxton R. Solitary wave interactions in elastic rods. Stud Appl Math, 1986, 75(1): 95--122
[3] Saxton R. Existence of solutions for a finite nonlinearly hyperelastic rod. J Math Anal Appl, 1985, 105(1): 59--75
[4] Li J, Liu Z. Smooth and non-smooth traveling waves in a nonlinearly dispersive equation. Appl Math Model, 2000, 25: 41--56
[5] Zhang W, Ma W. Explicit solitary wave solutions to generalized Pochhammer-Chree equations. Appl Math Mech, 1999, 20(6): 625--632
[6] Li J, Zhang L. Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation. Chaos, Soliton and Fractals, 2002, 14: 581--593
[7] Rodrigues J F. Obstacle Problems in Mathematical Physics. North-Holland, Amsterdam: Elsevier Science Ltd, 1987
[8] Kocev I.On boundness of Lp derivatives of solutions for elliptic differential equations. Math Sb, 1956, 38: 360--372 (in Russian)
[9] Chen G, Wang S. Existence and nonexistence of global solutions for the generalized IMBq equation. Nonlinear Anal, 1999, 36: 961--980
[10] Naemark M A. Linear Differential Operators. Moscow: Gaustyhisdute, 1954 (in Russian)
[11] Ball J M. Remarks on blow--up and nonexistence theorems for nonlinear evolution equations. Quart J Math, 1977, 28: 473--486
[12] Liu Y. Existence and blow up of solutions of a nonlinear Pochhammer-Chree equation. Indiana Univ Math J, 1996, 45: 797--816
[13] Angulo J, Scialom M. Improved blow-up of solutions of a generalized Boussinesq equation. Comput Appl Math, 1999, 18: 333--341, 371
[14] Chae Dongho, Nam Hee-Seok. Local existence and blow-up criterion for the Boussinesq equations. Proc Roy Soc Edinburgh Sect A,
1997, 127: 935--946
[15] Yang Z, Chen G. Blow-up of solutions of a class of generalized Boussinesq equations. Acta Math Sci, 1996, 16(1): 31--39
[16] Straughan B. Global nonexistence of solutions to some Boussinesq type equations. J Math Phys Sci, 1992, 26: 155--164
[17] Sachs R L. On the blow-up of certain solutions of the "good" Boussinesq equation. Appl Anal, 1990, 36: 145--152
[18] Straughan B. Uniqueness and stability for the conduction-diffusion solution to the Boussinesq equations backward in time. Proc Roy Soc
London Ser A, 1975/76, 347: 435--446
[19] Levine H A, Sleeman B D. A note on the nonexistence of global solutions of initial-boundary value problems for the Boussinesq equation u tt=3uxxxx+uxx-12(u2)xx. J Math Anal Appl, 1985, 107: 206--210 |