数学物理学报(英文版) ›› 2010, Vol. 30 ›› Issue (3): 890-896.doi: 10.1016/S0252-9602(10)60086-0

• 论文 • 上一篇    下一篇

RIGIDITY THEOREMS OF CLIFFORD TORUS

张运涛   

  1. Department of Mathematics, Xuzhou Normal University, Xuzhou |220009, China
  • 收稿日期:2007-09-30 修回日期:2008-05-05 出版日期:2010-05-20 发布日期:2010-05-20
  • 基金资助:

    Project supported by the Foundation of Xuzhou Normal University (08XLA02) and the Education Department of Jiangsu Province (07KJB110115)

RIGIDITY THEOREMS OF CLIFFORD TORUS

 ZHANG Yun-Tao   

  1. Department of Mathematics, Xuzhou Normal University, Xuzhou |220009, China
  • Received:2007-09-30 Revised:2008-05-05 Online:2010-05-20 Published:2010-05-20
  • Supported by:

    Project supported by the Foundation of Xuzhou Normal University (08XLA02) and the Education Department of Jiangsu Province (07KJB110115)

摘要:

In this article, we prove that the Clifford torus S1(√1-r2) ×Sn-1(r) is the only closed hypersurface in the  unit sphere Sn+1(1) with infinite fundamental group, which satisfy r2≥(n-1)/nRicM ≤ C-(H), and S ≤ S+(H). Moreover, we give a  characterization of Clifford torus S1(√1-r2) ×Sn-1(r) with  r2 ={2(n-1)+nH2±|H|√n2H2+4(n-1)/2n(1+H2}.

关键词: Principle curvatual,  Ricci curvature,  Clifford torus

Abstract:

In this article, we prove that the Clifford torus S1(√1-r2) ×Sn-1(r) is the only closed hypersurface in the  unit sphere Sn+1(1) with infinite fundamental group, which satisfy r2≥(n-1)/nRicM ≤ C-(H), and S ≤ S+(H). Moreover, we give a  characterization of Clifford torus S1(√1-r2) ×Sn-1(r) with  r2 ={2(n-1)+nH2±|H|√n2H2+4(n-1)/2n(1+H2}.

Key words: Principle curvatual,  Ricci curvature,  Clifford torus

中图分类号: 

  • 53C42