[1] Bellomo N, Bellouquid A, Tao Y, Winkler M. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math Models Methods Appl Sci, 2015, 25(9): 1663-1763 [2] Silva P B E, Guillén-González F, Perusato C F, Rodríguez-Bellido M A. Bilinear optimal control of the Keller-Segel logistic model in 2D-domains. Appl Math Optim, 2023, 87(3): Art 55 [3] Duarte-Rodríguez A, Ferreira L C, Villamizar-Roa E J. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete Contin Dyn Syst Ser B, 2019, 24(2): 423-447 [4] Feireisl E, Novotný A.Singular Limits in Thermodynamics of Viscous Fluids. Basel: Birkhäuser, 2009 [5] Guillén-González F, Mallea-Zepeda E, Rodríguez-Bellido M A. A regularity criterion for a 3D chemo-repulsion system and its application to a bilinear optimal control problem. SIAM J Control Optim, 2020, 58(3): 1457-1490 [6] Guillén-González F, Mallea-Zepeda E, Rodríguez-Bellido M A. Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM Control Optim Calc Var, 2020, 26: Art 29 [7] Guillén-González F, Mallea-Zepeda E, Villamizar-Roa E J. On a bi-dimensional chemo-repulsion model with nonlinear production and a related optimal control problem. Acta Appl Math, 2020, 170: 963-979 [8] Gunzburger M D, Manservisi S. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with boundary control. SIAM J Control Optim, 2000, 39: 594-634 [9] Gunzburger M D.Perspectives in Flow Control and Optimization. Philadelphia: SIAM, 2002 [10] Hurst J L, Beyon R J. Scent wars: the chemobiology of competitive signalling in mice. BioEssays, 2004, 26: 1288-1298 [11] Lions J L.Quelques Métodes de Résolution des Problèmes aux Limites Non linéares. Paris: Dunod, 1969 [12] Liu C, Yuang Y. Optimal control of a fully parabolic attraction-repulsion chemotaxis model with logistic source in 2D. Appl Math Optim, 2022, 85(1): Art 7 [13] López-Ríos J, Villamizar-Roa E J. An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model. ESAIM Control Optim Calc Var, 2021, 27: Art 58 [14] Lorca S, Mallea-Zepeda E, Villamizar-Roa E J. Stationary solutions to a chemo-repulsion system and a related optimal bilinear control problem. Bull Braz Math Soc (N S), 2023, 54: Art 39 [15] Lotka A J.Elements of Physical Biology. Baltimore: Williams and Wilkins Co, 1925 [16] Mallea-Zepeda E, Ortega-Torres E, Villamizar-Roa E J. An optimal control problem for the Navier-Stokes-$\alpha$ system. J Dyn Control Syst, 2023, 29(1): 129-156 [17] Rodríguez-Bellido M A, Rueda-Gómez D A, Villamizar-Roa E J. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete Contin Dyn Syst Ser B, 2018, 23: 557-571 [18] Simon J. Compact sets in the space $L^p(0,T;B)$. Ann Mat Pura Appl,1987, 146: 65-96 [19] Tello J I, Wrzosek D. Inter-species competition and chemorepulsion. J Math Anal Appl, 2018, 459: 1233-1250 [20] Troltzsch F.Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Providence, RI: Amer Math Soc, 2010 [21] Volterra V. Variazioni e fluttuazioni del numero díndividui in specie animali conviventi. Mem R Accad Naz Dei Lincei Ser VI, 1926, 2: 31-113 [22] Zimmer R K, Butman C A. Chemical signaling processes in the marine environment. Biol Bull, 2000, 198: 168-187 [23] Zowe J, Kurcyusz S. Regularity and stability for the mathematical programming problem in Banach spaces. Appl Math Optim, 1979, 5: 49-62 |