[1] Visintin A. Differential Models of Hysteresis. Appl Math Sci 111. Berlin:Springer-Verlag, 1994 [2] Colli P, Kenmochi N, Kubo M. A phase field model with temperature dependent constraint. J Math Anal Appl, 2001, 256:668-685 [3] Krejčí P, Sprekels J, Stefanelli U. Phase-field models with hysteresis in one-dimensional thermoviscoplasticity. SIAM J Math Anal, 2002, 34:409-434 [4] Giorgi C. Phase-field models for transition phenomena in materials with hysteresis. Discrete Contin Dyn Syst Ser S, 2015, 8(4):693-722 [5] Helmers M, Herrmann M. Hysteresis and phase transitions in a lattice regularization of an ill-posed forwardbackward diffusion equation. Arch Ration Mech Anal,2018, 230(1):231-275 [6] Corli A, Fan H. Two-phase flow in porous media with hysteresis. J Differential Equations,2018, 265(4):1156-1190 [7] Krejčí P, Timoshin S A, Tolstonogov A A. Relaxation and optimisation of a phase-field control system with hysteresis. Int J Control, 2018, 91(1):85-100 [8] Kubo M. A filtration model with hysteresis. J Differential Equations,2004,201:75-98 [9] Krejčí P, O'Kane J P, Pokrovskii A, Rachinskii D. Properties of solutions to a class of differential models incorporating Preisach hysteresis operator. Physica D, 2012,241:2010-2028 [10] Albers B. Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media:a review. Acta Mech, 2014, 225(8):2163-2189 [11] Detmann B, Krejčí P, Rocca E. Solvability of an unsaturated porous media flow problem with thermomechanical interaction. SIAM J Math Anal, 2016, 48(6):4175-4201 [12] Krejčí P, Timoshin S A. Coupled ODEs control system with unbounded hysteresis region. SIAM J Control Optim, 2016, 54(4):1934-1949 [13] Cahlon B, Schmidt D, Shillor M, Zou X. Analysis of thermostat models. Eur J Appl Math, 1997, 8(5):437-455 [14] Kopfová J, Kopf T. Differential equations, hysteresis, and time delay. Z Angew Math Phys,2002, 53(4):676-691 [15] Logemann H, Ryan E P, Shvartsman I. A class of differential-delay systems with hysteresis:Asymptotic behaviour of solutions. Nonlinear Anal, 2008, 69(1):363-391 [16] Gurevich P, Ron E. Stability of periodic solutions for hysteresis-delay differential equations. J Dynam Differential Equations, 2019,31(4):1873-1920 [17] Timoshin S A. Bang-bang control of a thermostat with nonconstant cooling power. ESAIM Control Optim Calc Var, 2018, 24(2):709-719 [18] Aiki T, Kumazaki K. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process. Phys B, 2012, 407:1424-1426 [19] Aiki T, Kumazaki K. Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials. Netw Heterog Media, 2014, 9(4):683-707 [20] Jensen M M, Johannesson B, Geiker M R. A numerical comparison of ionic multi-species diffusion with and without sorption hysteresis for cement-based materials. Transp Porous Media, 2015, 107(1):27-47 [21] Aiki T, Timoshin S A. Existence and uniqueness for a concrete carbonation process with hysteresis. J Math Anal Appl, 2017, 449(2):1502-1519 [22] Timoshin S A, Aiki T. Extreme solutions in control of moisture transport in concrete carbonation. Nonlinear Anal Real World Appl, 2019, 47:446-459 [23] Aiki T, Minchev E. A prey-predator model with hysteresis effect. SIAM J Math Anal, 2005, 36(6):2020- 2032 [24] Zheng J, Wang Y. Well-posedness for a class of biological diffusion models with hysteresis effect. Z Angew Math Phys, 2015, 66(3):771-783 [25] Wang Y, Zheng J.Periodic solutions to a class of biological diffusion models with hysteresis effect. Nonlinear Anal Real World Appl, 2016, 27:297-311 [26] Timoshin S A, Aiki T. Control of biological models with hysteresis. Systems Control Lett, 2019, 128:41-45 [27] Brokate M. Optimal control of systems described by ordinary differential equations with nonlinear characteristics of hysteresis type.[I]. Automat Remote Control, 1991, 52(12):part 1, 1639-1681 [28] Brokate M. Optimal control of systems described by ordinary differential equations with nonlinear characteristics of hysteresis type.[II]. Automat Remote Control, 1992, 53(1):part 1, 1-33 [29] Brézis H. Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. Amsterdam:North-Holland, 1973 [30] Mosco U. Convergence of convex sets and of solutions of variational inequalities. Adv Math, 1969, 3:510-585 [31] Kenmochi N. Solvability of nonlinear evolution equations with time-dependent constraints and applications. Bull Fac Educ, Chiba Univ, Part 2, 1981, 30:1-87 [32] Hiai F,Umegaki H. Integrals, conditional expectations, and martingales of multivalued functions. J Multivariate Anal, 1977, 7:149-182 [33] De Blasi F S, Pianigiani G, Tolstonogov A A. A Bogolyubov-type theorem with a nonconvex constraint in Banach spaces. SIAM J Control Optim, 2004, 43(2):466-476 [34] Phan Van Chuong. A density theorem with an application in relaxation of non-convex-valued differential equations. J Math Anal Appl, 1987, 124:1-14 [35] Fryszkowski A. Continuous selections for a class of nonconvex multivalued maps. Studia Math, 1983, 76:163-174 [36] Balder E J. Necessary and sufficient conditions for L1-strong-weak lower semi-continuity of integral functionals. Nonlinear Anal, 1987, 11(12):1399-1404 |