[1] Abresch U. Isoparametric hypersurfaces with four or six distinct principal curvatures. Math Ann, 1983, 264: 283-302 [2] Blaschke W.Vorlesungenüber Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie. Vol 3. Berlin: Springer, 1929 [3] Cartan E. Familles de surfaces isoparamétriques dans les espaces à courbure constante. Annali di Mat, 1938, 17: 177-191 [4] Cartan E. Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques. Math Z, 1939, 45: 335-367 [5] Cartan E. Sur quelque familles remarquables d'hypersurfaces. C R Congrès Math Liège, 1939: 30-41 [6] Cartan E. Sur des familles d'hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions. Revista Univ Tucuman, Serie A, 1940, 1: 5-22 [7] Cecil T. On the Lie curvatures of Dupin hypersurfaces. Kodai Math J, 1990, 13: 143-153 [8] Cecil T. Lie sphere geometry and Dupin submanifolds//Verstraelen L, West A. Geometry and Topology of Submanifolds III. River Edge, NJ: World Scientific, 1991: 90-107 [9] Cecil T.Lie Sphere Geometry, with Applications to Submanifolds. 2nd ed. New York: Springer, 2008 [10] Cecil T. Isoparametric and Dupin hypersurfaces. Symmetry Inteyrablity and Geometry-Method and Application, 2008, 4: Art 062 [11] Cecil T. Compact Dupin hypersurfaces. ICCM Notices, 2021, 9(1): 57-68 [12] Cecil T, Chern S S. Tautness and Lie sphere geometry. Math Ann, 1987, 278: 381-399 [13] Cecil T, Chern S S. Dupin submanifolds in Lie sphere geometry//Jiang B, et al. Differential Geometry and Topology: Proceedings of the Special Year at Nankai Institute of Mathematics, Tianjin1986-87. Lecture Notes in Math 1369. Berlin: Springer, 1989: 1-48 [14] Cecil T, Chern S S.Dupin submanifolds in Lie sphere geometry (updated version). arXiv:2010.06429v1 [math.DG] 13 Oct 2020 [15] Cecil T, Chi Q S, Jensen G. Isoparametric hypersurfaces with four principal curvatures. Ann Math, 2007, 166: 1-76 [16] Cecil T, Chi Q S, Jensen G. Dupin hypersurfaces with four principal curvatures II. Geom Dedicata, 2007, 128: 55-95 [17] Cecil T, Chi Q S, Jensen G. Classifications of Dupin hypersurfaces//Dillen F, Van de Woestyne I. Pure and Applied Differential Geometry, PADGE2007. Aachen: Shaker Verlag, 2007: 48-56 [18] Cecil T, Chi Q S, Jensen G. On Kuiper's question whether taut submanifolds are algebraic. Pacific J Math, 2008, 234: 229-247 [19] Cecil T, Jensen G. Dupin hypersurfaces with three principal curvatures. Invent Math, 1998, 132: 121-178 [20] Cecil T, Jensen G. Dupin hypersurfaces with four principal curvatures. Geom Dedicata, 2000, 79: 1-49 [21] Cecil T, Ryan P. Focal sets, taut embeddings and the cyclides of Dupin. Math Ann, 1978, 236: 177-190 [22] Cecil T, Ryan P.Tight and Taut Immersions of Manifolds. Research Notes in Math 107. London: Pitman, 1985 [23] Cecil T, Ryan P.Geometry of Hypersurfaces. New York: Springer, 2015 [24] Chi Q S. Isoparametric hypersurfaces with four principal curvatures revisited. Nagoya Math J, 2009, 193: 129-154 [25] Chi Q S. A note on the paper "Isoparametric hypersurfaces with four principal curvatures''. Hongyou Wu Memorial Volume. Pacific Journal of Applied Mathematics, 2011, 3: 127-134 [26] Chi Q S. Isoparametric hypersurfaces with four principal curvatures II. Nagoya Math J, 2011, 204: 1-18 [27] Chi Q S. A new look at Condition A. Osaka J Math, 2012, 49: 133-166 [28] Chi Q S. Isoparametric hypersurfaces with four principal curvatures III. J Differential Geom, 2013, 94: 469-504 [29] Chi Q S. Isoparametric hypersurfaces with four principal curvatures IV. J Differential Geom, 2020, 115: 225-301 [30] Chi Q S. The isoparametric story, a heritage of élie Cartan. arXiv:2007.02137 [math.DG] [31] Dorfmeister J, Neher E. Isoparametric hypersurfaces, case $g = 6, m = 1$. Communications in Algebra, 1985, 13: 2299-2368 [32] Dupin C.Applications de Géométrie et de Méchanique. Paris: Bachelier, 1822 [33] Ferus D, Karcher H, Münzner H F.Cliffordalgebren und neue isoparametrische Hyperflächen. Math Z, 1981, 177: 479-502 (see also an English translation by T.E. Cecil, arXiv:1112.2780v1 [mathDG] 13 Dec 2011) [34] Grove K, Halperin S. Dupin hypersurfaces, group actions,the double mapping cylinder. J Diff Geom, 1987, 26: 429-459 [35] Immervoll S. On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres. Ann Math, 2008, 168: 1011-1024 [36] Levi-Civita T. Famiglie di superficie isoparametrische nell'ordinario spacio euclideo. Atti Accad naz Lincei Rend Cl Sci Fis Mat Natur, 1937, 26: 355-362 [37] Lie S. über Komplexe, inbesondere Linien- und Kugelkomplexe, mit Anwendung auf der Theorie der partieller Differentialgleichungen. Math Ann, 1872, 5: 145-208, 209-256 [38] Miyaoka R. Compact Dupin hypersurfaces with three principal curvatures. Math Z, 1984, 187: 433-452 [39] Miyaoka R. Dupin hypersurfaces and a Lie invariant. Kodai Math J, 1989, 12: 228-256 [40] Miyaoka R. Dupin hypersurfaces with six principal curvatures. Kodai Math J, 1989, 12: 308-315 [41] Miyaoka R. Isoparametric hypersurfaces with $(g,m) = (6,2)$. Ann Math, 2013, 177: 53-110 [42] Miyaoka R. Errata on isoparametric hypersurfaces with $(g,m) = (6,2)$. Ann Math, 2016, 183: 1057-1071 [43] Miyaoka R, Ozawa T.Construction of taut embeddings and Cecil-Ryan conjecture//Shiohama K. Geometry of Manifolds. Perspect Math 8. New York: Academic Press, 1989: 181-189 [44] Münzner H F. Isoparametrische Hyperflächen in Sphären. Math Ann, 1980, 251: 57-71 (see also an English translation by T.E. Cecil, Mathematics Department Faculty Scholarship 14. College of the Holy Cross.\\ https://crossworks.holycross.edu/math_fac_scholarship/14) [45] Münzner H F. Isoparametrische Hyperflächen in Sphären II: über die Zerlegung der Sphäre in Ballbündel. Math Ann, 1981, 256: 215-232 (see also an English translation by T.E. Cecil, Mathematics Department Faculty Scholarship 13. College of the Holy Cross.\\ https://crossworks.holycross.edu/math_fac_scholarship/13) [46] Niebergall R. Dupin hypersurfaces in ${\bf R}^5$ I. Geom Dedicata, 1991, 40: 1-22 [47] Niebergall R. Dupin hypersurfaces in ${\bf R}^5$ II. Geom Dedicata, 1992, 41: 5-38 [48] Nomizu K. Characteristic roots and vectors of a differentiable family of symmetric matrices. Lin and Multilin Alg, 1973, 2: 159-162 [49] Nomizu K. Some results in E. Cartan's theory of isoparametric families of hypersurfaces. Bull Amer Math Soc, 1973, 79: 1184-1188 [50] Nomizu K. élie Cartan's work on isoparametric families of hypersurfaces//Proc Sympos Pure Math 27, Part 1. Providence, RI: Amer Math Soc, 1975: 191-200 [51] Ozeki H, Takeuchi M. On some types of isoparametric hypersurfaces in spheres I, II. Tôhoku Math J, 1975, 27: 515-559; 1976, 28: 7-55 [52] Pinkall U.Dupin'sche Hyperflächen [D]. Freiburg: Univ Freiburg, 1981 (see also an English translation by T.E. Cecil, Mathematics Department Faculty Scholarship 15. College of the Holy Cross.\\ https://crossworks.holycross.edu/math_fac_scholarship/15) [53] Pinkall U.Letter to T. Cecil. December, 5, 1984 [54] Pinkall U. Dupin'sche Hyperflächen in $E^4$. Manuscr Math, 1985, 51: 89-119 [55] Pinkall U. Dupin hypersurfaces. Math Ann, 1985, 270: 427-440 [56] Pinkall U, Thorbergsson G. Deformations of Dupin hypersurfaces. Proc Amer Math Soc, 1989, 107: 1037-1043 [57] Reckziegel H. On the eigenvalues of the shape operator of an isometric immersion into a space of constant curvature. Math Ann, 1979, 243: 71-82 [58] Ryan P. Homogeneity and some curvature conditions for hypersurfaces. Tôhoku Math J, 1969, 21: 363-388 [59] Samuel P. Projective Geometry. Berlin: Springer, 1988 [60] Segre B. Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque numero di demesioni. Atti Accad naz Lincie Rend Cl Sci Fis Mat Natur, 1938, 27: 203-207 [61] Siffert A. Classification of isoparametric hypersurfaces in spheres with $(g,m) = (6,1)$. Proc Amer Math Soc, 2016, 144: 2217-2230 [62] Siffert A. A new structural approach to isoparametric hypersurfaces in spheres. Ann Global Anal Geom, 2017, 52: 425-456 [63] Singley D. Smoothness theorems for the principal curvatures and principal vectors of a hypersurface. Rocky Mountain J Math, 1975, 5: 135-144 [64] Somigliana C. Sulle relazione fra il principio di Huygens e l'ottica geometrica. Atti Acc Sc Torino, 1918-1919, 54: 974-979 [65] Stolz S. Multiplicities of Dupin hypersurfaces. Invent Math, 1999, 138: 253-279 [66] Takagi R. A class of hypersurfaces with constant principal curvatures in a sphere. J Diff Geom, 1976, 11: 225-233 [67] Takagi R, Takahashi T. On the principal curvatures of homogeneous hypersurfaces in a sphere//Differential Geometry in honor of K. Yano. Tokyo: Kinokuniya, 1972: 469-481 [68] Thorbergsson G. Dupin hypersurfaces. Bull London Math Soc, 1983, 15: 493-498 [69] Thorbergsson G. A survey on isoparametric hypersurfaces and their generalizations//Handbook of Differential Geometry, Vol I. Amsterdam: North-Holland, 2000: 963-995 |