[1] Besicovitch A S. On generalized almost periodic functions. Proc London Math Soc, 1926, 25(2): 495-512 [2] Besicovitch A S. Almost Periodic Functions. New York: Dover Publications Inc, 1955 [3] Bohr H, Fø lner E. On some types of functional spaces. A contribution to the theory of almost periodic functions. Acta Math,1945, 76: 31-155 [4] Buffoni B, Dancer E N, Toland J F. The regularity and local bifurcation of steady periodic water waves. Arch Ration Mech Anal, 2000, 152(3): 207-240 [5] Buffoni B, Dancer E N, Toland J F. The sub-harmonic bifurcation of Stokes waves. Arch Ration Mech Anal, 2000, 152(3): 241-271 [6] Constantin A. The trajectories of particles in Stokes waves. Invent Math, 2006, 166(3): 523-535 [7] Constantin A, Ehrnström M, Wahlén E. Symmetry of steady periodic gravity water waves with vorticity. Duke Math J,2007, 140(3): 591-603 [8] Constantin A, Escher J. Symmetry of steady deep-water waves with vorticity. European J Appl Math, 2004, 15(6): 755-768 [9] Constantin A, Escher J. Symmetry of steady periodic surface water waves with vorticity. J Fluid Mech, 2004, 498: 171-181 [10] Constantin A, Escher J. Analyticity of periodic traveling free surface water waves with vorticity. Ann Math, 2011, 173(2): 559-568 [11] Constantin A, Strauss W. Exact steady periodic water waves with vorticity. Comm Pure Appl Math, 2004, 57(4): 481-527 [12] Constantin A, Strauss W. Periodic traveling gravity water waves with discontinuous vorticity. Arch Ration Mech Anal, 2011, 202(1): 133-175 [13] Constantin A, Strauss W, Vərvərucə E. Global bifurcation of steady gravity water waves with critical layers. Acta Math,2016, 217(2): 195-262 [14] Constantin A, Strauss W A. Stability properties of steady water waves with vorticity. Comm Pure Appl Math, 2007, 60(6): 911-950 [15] Constantin A, Vərvərucə E. Steady periodic water waves with constant vorticity: Regularity and local bifurcation. Arch Ration Mech Anal,2011, 199(1): 33-67 [16] Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8: 321-340 [17] Liu J, Yin Z. On the Cauchy problem of a weakly dissipative {$\mu$}-Hunter-Saxton equation. Ann Inst H Poincaré Anal Non Linéaire,2014, 31(2): 267-279 [18] Ehrnström M. Uniqueness for steady periodic water waves with vorticity. Int Math Res Not,2005, 60: 3721-3726 [19] Ehrnström M. Uniqueness of steady symmetric deep-water waves with vorticity. J Nonlinear Math Phys,2005, 12(1): 27-30 [20] Grande R. Fourier multipliers for Besicovitch spaces. Z Anal Anwendungen, 1998, 17(4): 917-935 [21] Groves M D. Steady water waves. J Nonlinear Math Phys, 2004, 11(4): 435-460 [22] Groves M D, Wahlén E. Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity. Phys D,2008, 237: 1530-1538 [23] Keady G, Norbury J. On the existence theory for irrotational water waves. Math Proc Cambridge Philos Soc, 1978, 83(1): 137-157 [24] Kozlov V, Lokharu E. Small-amplitude steady water waves with critical layers: Non-symmetric waves. J Differential Equations, 2019, 267(7): 4170-4191 [25] Stokes G. On the theory of oscillatory waves. Trans Cambridge Philos Soc, 1847, 8(310): 441-473 [26] Toland J F. Stokes waves. Topol Methods Nonlinear Anal, 1996, 7(1): 1-48 [27] Toland J F. On a pseudo-differential equation for Stokes waves. Arch Ration Mech Anal, 2002, 162(2): 179-189 [28] Wahlén E. Steady water waves with a critical layer. J Differential Equations,2009, 246(6): 2468-2483 |