[1] Feng L L, Tian S F, Yan H, et al.On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. Eur Phys J Plus, 2016, 131(7): 1-18 [2] Liu W H, Zhang Y F, Shi D D.Analysis on lump, lumpoff and rogue waves with predictability to a generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. Commun Theor Phys, 2019, 71(6): 670-676 [3] Ma H C, Cheng Q X, Deng A P.Soliton molecules and some novel hybrid solutions for the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. Commun Theor Phys, 2020, 72(9): 095001 [4] Zhang C Y, Gao Y T, Li L Q, et al.The higher-order lump, breather and hybrid solutions for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in fluid mechanics. Nonlinear Dyn, 2020, 102: 1773-1786 [5] Deng G F, Gao Y T, Ding C C, et al.Solitons and breather waves for the generalized Konopelchenko- Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Solitons Fractals, 2020, 140: 110085 [6] Zhou X J, Ilhan O A, Manafian J, et al.N-lump and interaction solutions of localized waves to the (2+1)- dimensional generalized KDKK equation. J Geom Phys, 2021, 168: 104312 [7] Yuan P S, Qi J X, Li Z L, et al.General M-lumps, T-breathers and hybrid solutions to (2+1)-dimensional generalized KDKK equation. Chin Phys B, 2021, 30(4): 040503 [8] Ma Z, Chen J, Fei J.Lump and line soliton pairs to a (2+1)-dimensional integrable Kadomtsev-Petviashvili equation. Comput Math Appl, 2018, 76(5): 1130-1138 [9] Xu Z, Chen H, Dai Z.Rogue wave for the (2+1)-dimensional Kadomtsev-Petviashvili equation. Appl Math Lett, 2014, 37: 34-38 [10] Yang X Y, Fan R, Li B.Soliton molecules and some novel interaction solutions to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. Phys Scr, 2020, 95(4): 045213 [11] Feng L L, Tian S F, Wang X B, et al.Rogue waves, homoclinic breather waves and soliton waves for the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. Appl Math Lett, 2017, 65: 90-97 [12] Xu G.Integrability of a (2+1)-dimensional generalized breaking soliton equation. Appl Math Lett, 2015, 50: 16-22 [13] Qin Y, Gao Y T, Shen Y J, et al.Solitonic interaction of a variable-coefficient (2+1)-dimensional generalized breaking soliton equation. Phys Scr, 2013, 88(4): 045004 [14] Ma Y L, Li B Q.Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton. Comput Math Appl, 2019, 78(3): 827-839 [15] Wazwaz A M.A new integrable (2+1)-dimensional generalized breaking soliton equation: N-soliton solutions and traveling wave solutions. Commun Theor Phys, 2016, 66(4): 385-388 [16] Zhao Z L, Han B.Quasiperiodic wave solutions of a (2+1)-dimensional generalized breaking soliton equation via bilinear Bäcklund transformation. Eur Phys J Plus, 2016, 131(5): 1-16 [17] Li L Q, Gao Y L, Hu L, et al.Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)- dimensional Sawada-Kotera equation. Nonlinear Dyn, 2020, 100(3): 2729-2738 [18] An H L, Feng D L, Zhu H X.M-lump, high-order breather solutions and interaction dynamics of a generalized (2+1)-dimensional nonlinear wave equation. Nonlinear Dyn, 2019, 98(2): 1275-1286 [19] Dong J J, Li B, Yuen M W.Soliton molecules and mixed solutions of the (2+1)-dimensional bidirectional Sawada-Kotera equation. Commun Theor Phys, 2020, 72(2): 025002 [20] Yao R X, Li Y, Lou S Y.A new set and new relations of multiple soliton solutions of (2+1)-dimensional Sawada-Kotera equation. Commun Nonlinear Sci Numer Simulat, 2021, 99: 105820 [21] Liu X M, Cui Y D, Yao X K.Real-Time Observation of the buildup of soliton molecules. Phys Rev Lett, 2018, 121(2): 023905 [22] Lou S Y.Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance. J Phys Commun, 2020, 4(4): 041002 [23] Zhang Z, Yang X Y, Li B.Soliton molecules and novel smooth positons for the complex modified KdV equation. Appl Math Lett, 2020, 103: 106168 [24] Xu D H, Lou S Y.Dark soliton molecules in nonlinear optics. Acta Phys Sin, 2020, 69(1): 014208 (in Chinese) [25] Xu G, Gelash A, Chabchoub A, et al.Breather wave molecules. Phys Rev Lett, 2019, 122(8): 084101 [26] Jia M, Lin J, Lou S Y.Soliton and breather molecules in few-cycle-pulse optical model. Nonlinear Dyn, 2020, 100(4): 3745-3757 [27] Yan Z W, Lou S Y.Special types of solitons and breather molecules for a (2+1)-dimensional fifth-order KdV equation. Commun Nonlinear Sci Numer Simulat, 2020, 91: 105425 [28] Jia M, Chen Z T.Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation. Phys Scr, 2020, 95(10): 105210 [29] Xu G, Gelash A, Chabchoub A, et al.Breather wave molecules. Phys Rev Lett, 2019, 122(8): 084101 [30] Li Y, Yao R X, Xia Y R, et al.Plenty of novel interaction structures of soliton molecules and asymmetric solitons to (2+1)-dimensional Sawada-Kotera equation. Commun Nonlinear Sci Numer Simulat, 2021, 100: 105843 [31] Zhang X E, Chen Y.Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo-Miwa equation. Commun Nonlinear Sci Numer Simulat, 2017, 52: 24-31 [32] Hirota R.The Direct Method in Soliton Theory. New York: Cambridge University Press, 2004 [33] Yan Z W, Lou S Y.Soliton molecules in Sharma-Tasso-Olver-Burgers equation. Appl Math Lett, 2020, 104: 106271 [34] Li W T, Li J H, Li B.Soliton molecules, asymmetric solitons and some new types of hybrid solutions in (2+1)-dimensional Sawada-Kotera model. Mod Phys Lett B, 2020, 34(13): 2050141 [35] Shen Y L, Yao R X, Xia Y R.On a nonlocal Alice-Bob-Schrödinger equation: bilinear Bäcklund and Darboux transformations and nonlinear waves. Acta Math Sci, 2021, 41A(2): 370-381 [36] Ma W X.Lump and interaction solutions to linear (4+1)-dimensional PDEs. Acta Math Sci, 2019, 39B(2): 498-508 [37] Yuan F, Cheng Y, He J S.Degeneration of breathers in the Kadomttsev-Petviashvili I equation. Commun Nonlinear Sci Numer Simulat, 2020, 83: 105027 [38] Wang C J, Fang H, Tang X X.State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation. Nonlinear Dyn, 2019, 95: 2943-2961 [39] Zhang X, Wang L, Liu C, et al.High-dimensional nonlinear wave transtions and their mechanisms. Chaos, 2020, 30: 113107 [40] Zhang D D, Wang L, Liu L, et al.Shape-changed propagations and interactions for the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluids. Commun Theor Phys, 2021, 73: 095001 [41] Chow K W, Grimshaw R H J, Ding E. Interactions of breathers and solitons in the extended Korteweg-de Vries equation. Wave Motion, 2005, 43(2): 158-166 [42] Anco S C, Ngatat N T, Willoughby M.Interaction properties of complex modified Korteweg-de Vries (mKdV) solitons. Physica D, 2011, 240(17): 1378-1394 |