[1] Astala K, Iwaniec I, Martin G J, Onninen J.Extremal mappings of finite distortion. Proc London Math Soc, 2005, 91(3): 655-702 [2] Becker J, Pommerenke C.Hölder continuity of conformal mappings and nonquasiconformal Jordan curves. Comment Math Helv, 1982, 57(2): 221-225 [3] Duren P.Harmonic Mappings in the Plane. Cambridge: Cambridge University Press, 2004 [4] Gehring F W, Palka B P.Quasiconformally homogeneous domains. J Analyse Math, 1976, 30: 172-199 [5] Gotoh Y.Domains with growth conditions for the quasihyperbolic metric. J Anal Math, 2000, 82: 149-173 [6] Guo C -Y.Regularity of the inverse of a homeomorphism with finite inner distortion. Acta Math Sin, Engl Ser, 2014, 30(12): 1999-2013 [7] Guo C -Y, Kiang C.Regularity of p-harmonic mappings into NPC spaces. Acta Math Sci, 2021, 41B(2): 633-645 [8] Guo C-Y, Xu H.Generalized quasidisks and conformality: progress and challenges. Complex Analysis and its Synergies, 2021, 2: 1-9 [9] Hencl S, Koskela P.Quasihyperbolic boundary conditions and capacity: uniform continuity of quasiconformal mappings. J Anal Math, 2005, 96: 19-35 [10] Iwaniec I, Martin G J, Sbordone C.Lp-integrability & weak type L2-estimates for the gradient of harmonic mappings of D. Discrete Contin Dyn Syst Ser B, 2009, 11(1): 145-152 [11] Jones P W.Extension theorems for BMO. Indiana Univ Math J, 1980, 29(1): 41-66 [12] Koskela P.Old and new on the quasihyperbolic metric. Duren P. Quasiconformal mappings and analysis. Ann Arbor, MI, 1995: 205-219 [13] Koskela P, Koski A, Onninen J.Sobolev homeomorphic extensions onto John domains. J Funct Anal, 2020, 279(10): 108719 [14] Koskela P, Onninen J, Tyson J T.Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings. Comment Math Helv, 2001, 76: 416-435 [15] Koskela P, Wang Z, Xu H. Controlled diffeomorphic extension of homeomorphisms. Nonlinear Anal, 2018, 177 part B: 586-600 [16] Koski A, Onninen J.Sobolev homeomorphic extensions. J Eur Math Soc, 2021, 23: 4065-4089 [17] Koski A, Onninen J.The Sobolev Jordan-Schoenflies problem. arXiv: 2008.09947 [18] Pommerenke C.Boundary Behaviour of Conformal Maps. Berlin: Springer-Verlag, 1992 [19] Rohde S.Quasicircles modulo bilipschitz maps. Rev Mat Iberoamericana, 2001, 17(3): 643-659 [20] Tukia P.The planar Schönflies theorem for Lipschitz maps. Ann Acad Sci Fenn Ser A I Math, 1980, 5(1): 49-72 [21] Verchota G C.Harmonic homeomorphisms of the closed disc to itself need be in W1,p, p < 2, but not W1,2. Proc Amer Math Soc, 2007, 135(3): 891-894 [22] Xu H.Weighted estimates for diffeomorphic extensions of homeomorphisms. Lincei Rend. Lincei Mat Appl, 2020, 31(1): 151-189 [23] Xu H.Optimal extensions of conformal mappings from the unit disk to cardioid-type domains. J Geom Anal, 2021, 31: 2296-2330 |