[1] Baker A. Matrix groups:An introduction to Lie group theory. London:Springer-Verlag, 2002 [2] Barbarino G, Garoni C, Serra-Capizzano S. Block generalized locally Toeplitz sequences:theory and applications in the unidimensional case. Electronic Transactions on Numerical Analysis, 2020, 53:28-112 [3] Barbarino G, Garoni C, Serra-Capizzano S. Block generalized locally Toeplitz sequences:theory and applications in the multidimensional case. Electronic Transactions on Numerical Analysis, 2020, 53:113-216 [4] Bini D A, Dendievel S, Latouche G, Meini B. Computing the exponential of large block-triangular block-Toeplitz matrices encountered in fluid queues. Linear Algebra and its Applications, 2016, 502:387-419 [5] Bini D A, Massei S, Meini B. On functions of quasi-Toeplitz matrices (Russian); translated from Matematicheskii Sbornik, 2017, 208(11):56-74 [6] Bini D A, Massei S, Meini B. Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes. Mathematics of Computation, 2018, 87(314):2811-2830 [7] Bini D A, Massei S, Robol L. Quasi-Toeplitz matrix arithmetic:a MATLAB toolbox. Numerical Algorithms, 2019, 81(2):741-769 [8] Bini D A, Meini B. On the exponential of semi-infinite quasi Toeplitz matrices. Numerische Mathematik, 2019, 141(2):319-351 [9] Bonsall F F, Duncan J. Complete Normed Algebras. New York:Springer-Verlag, 1973 [10] Böttcher A, Grusky S M. Spectral properties of banded Toeplitz matrices. Philadelphia:Society for Industrial and Applied Mathematics (SIAM), 2005 [11] Böttcher A, Silbermann B. Analysis of Toeplitz operators. Second Edition. Prepared jointly with Alexie Karlovich, Springer Monographs in Mathematics. Berlin:Springer-Verlag, 2006 [12] Böttcher A, Silbermann B. Introduction to large truncated Toeplitz matrices. Universitext. New York:Springer-Verlag, 1999 [13] Dehghan M. Fully implicit finite differences methods for two-dimensional diffusion with a non-local boundary condition. Journal of Computational and Applied Mathematics, 1999, 106(2):255-269 [14] Dudgeon D E, Mersereau R M. Multidimensional Digital Signal Processing. 2nd edition. Prentice-Hall Signal Processing Series, 1995 [15] Ehrhart T, Van der Mee C, Rodman L, Spitkovsky I. Factorization in weighted Wiener matrix algebra on linearly ordered Abelian groups. Integral Equations and Operator Theory, 2007, 58:65-86 [16] Garoni C, Serra-Capizzano S. Block generalized locally Toeplitz sequences:the case of matrix functions and an engineering application. The Electronic Journal of Linear Algebra, 2019, 35:204-222 [17] Garoni C, Serra-Capizzano S. Generalized Locally Toeplitz Sequences:Theory and Applications. Vol I. Cham:Springer, 2017 [18] Garoni C, Serra-Capizzano S. Generalized Locally Toeplitz Sequences:Theory and Applications. Vol II. Cham:Springer, 2018 [19] Gutiérrez-Gutiérrez J, Crespo P M, Böttcher A. Functions of the banded Hermitian block Toeplitz matrices in signal processing. Linear Algebra and its Applications, 2007, 422(2/3):788-807 [20] Grenander U, Szegö G. Toeplitz forms and their applications. New York:Chelsea Publishing Co, 1984 [21] Henrici P. Applied and Computational Complex Analysis. Vol 1. New York:John Wiley & Sons, 1974 [22] Higham N J. Function of matrices:theory and computational. Philadelphia:Society for Industrial and Applied Mathematics (SIAM), 2008 [23] Horn R A, Johnson C R. Matrix analysis. Cambridge:Cambridge University Press, 2013 [24] Jeuris B, Vandebril R. The Kaähler mean of block-Toeplitz matrices with Toeplitz structured blocks. SIAM Journal on Matrix Analysis and Applications, 2016, 37(3):1151-1175 [25] Khan M A, Timotin D. Algebras of block Toeplitz matrices with commuting entries. Linear and Multilinear Algebra, 2019. https://doi.org/10.1080/03081087.2019.1693955 [26] Kreyszig E. Introductory functional analysis with applications. New York:John Wiley & Sons, Inc, 1989 [27] Lee S T, Liu X, Sun H-W. Fast exponential time integration scheme for option pricing with jumps. Numerical Linear Algebra with Applications, 2012, 19(1):87-101 [28] Lee S T, Pang H-K, Sun H-W. Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM Journal on Scientific Computing, 2010, 32(2):774-792 [29] Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 2003, 45(1):3-49 [30] Nielsen F, Bhatia R. Matrix information geometry. Heidelberg:Springer, 2013 [31] Rudin W. Functional Analysis. Second Edition. New York:McGraw-Hill, Inc, 1991 [32] Rudin W. Principles of Mathematical Analysis. Third Edition. New York:McGraw-Hill Book Co, 1976 |