[1] Chen X D, Liu Z X, Ru M. Value distribution properties for the Gauss maps of the immersed harmonic surfaces. Pacific J Math, 2021, 309(2):267-287 [2] Chern S S. Minimal surfaces in an Euclidean space of N dimensions//Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse). Princeton, NJ:Princeton University Press,1965 [3] Chern S S, Osserman R. Complete minimal surfaces in euclidean n-space. J Anal Math, 1967, 19:15-34 [4] Osserman R. Global properties of minimal surfaces in E3 and En. Ann of Math, 1964, 80:340-364 [5] Xavier F. The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere. Ann of Math, 1981, 113(2):211-214 [6] Xin Y L. Stable harmonic maps from complete manifolds. Acta Mathe Sci, 1989, 9(4):415-420 [7] Ru M. On the Gauss map of minimal surfaces immersed in $\Bbb{R}^n$. J Differential Geom, 1991, 34(2):411-423 [8] Ru M. Gauss map of minimal surfaces with ramification. Trans Amer Math Soc, 1993, 339(2):751-764 [9] Fujimoto H. Value Distribution Theory of the Gauss Map of Minimal Surface in $\Bbb{R}^m$. Aspects of Mathematics, Vol E21. Friedr. Vieweg and Sohn, Braunschweig, 1993 [10] Osserman R, Ru M. An estimate for the Gauss curvature of minimal surfaces in $\Bbb{R}^m$ whose Gauss map omits a set of hyperplanes. J Differential Geom, 1997, 45:578-593 [11] Wang J S. Degree 3 algebraic minimal surfaces in the 3-sphere. Acta Math Sci, 2012, 32B(6):2065-2084 [12] Osserman R. Minimal surfaces in the large. Comment Math Helv, 1961, 35:65-76 [13] Fujimoto H. On the number of exceptional values of the Gauss maps of minimal surfaces. J Math Soc Japan, 1988, 40(2):235-247 [14] Fujimoto H. Modified defect relations for the Gauss map of minimal surfaces. II. J Differential Geom, 1990, 31(2):365-385 [15] Ros A. The Gauss map of minimal surfaces//Differential Geom, Valencia 2001. Singapore:World Scientific, 2002:235-252 [16] Klotz T. Surfaces harmonically immersed in E3. Pacific J Math, 1967, 21:79-87 [17] Klotz T. A complete RΛ-harmonically immersed surface in E3 on which H ≠ 0. Proc Amer Math Soc, 1968, 19:1296-1298 [18] Alarcon A, López F J. On harmonic quasiconformal immersions of surfaces in $\Bbb{R}^3$. Trans Amer Math Soc, 2013, 365(4):1711-1742 [19] Milnor K T. Mapping surfaces harmonically into En. Proc Amer Math Soc, 1980, 78:269-275 [20] Milnor K T. Are harmonically immersed surfaces at all like minimally immersed surafces?//Seminar on Minimal Submanifolds. Princeton University Press, 1984:99-110 [21] Jensen G R, Rigoli M. Harmonically immersed surfaces of $\Bbb{R}^n$. Trans Amer Math Soc, 1988, 307(1):363-372 [22] Campana F, Winkelmann J. A Brody theorem for orbifolds. Manuscripta Math, 2009, 128(2):195-212 [23] Milnor K T. Restrictions on the curvatures of φ-bounded surfaces. J Differential Geom, 1976, 11:31-46 [24] Kalaj D. The Gauss map of a harmonic surface. Indag Math (NS), 2013, 24(2):415-427 [25] Nochka E I. Uniqueness theorems for rational functions on algebraic varieties. Bul Akad Shtiintsa RSS Moldoven, 1979, 3:27-31(Russian) [26] Sakai F. Degeneracy of holomorphic maps with ramification. Invent Math, 1974, 26:213-229 [27] Ha P H. An estimate for the Gaussian curvature of minimal surfaces in $\Bbb{R}^m$ whose Gauss map is ramified over a set of hyperplanes. Differential Geom Appl, 2014, 32:130-138. [28] Nochka E I. On the theory of meromorphic functions. Soviet Math, Dokl, 1983, 27(2):377-381 [29] Chen W. Cartan conjecture:Defect Relation for Merommorphic Maps from Parabolic Manifold to Projective Space[D]. University of Notre Dame, 1987 [30] Chen X D, Li Y Z, Liu Z X, Ru M. Curvature estimate on an open Riemann surface with the induced metric. Math Z, 2020, 298:451-467 |