数学物理学报(英文版) ›› 2013, Vol. 33 ›› Issue (6): 1667-1674.doi: 10.1016/S0252-9602(13)60113-7

• 论文 • 上一篇    下一篇

SOME NORMALITY CRITERIA OF MEROMORPHIC FUNCTIONS

雷春林|方明亮*|曾翠萍   

  1. Department of Applied Mathematics, South China Agricultural University, Guangzhou 510642, China; Department of Mathematics, Guangdong University of Finance, Guangzhou 510521, China
  • 收稿日期:2012-05-13 修回日期:2013-01-01 出版日期:2013-11-20 发布日期:2013-11-20
  • 通讯作者: 方明亮,mlfang@scau.edu.cn E-mail:leichunlin0113@126.com; mlfang@scau.edu.cn;ytxzcp@163.com
  • 基金资助:

    Supported by the NNSF of China (11071083), the Tianyuan Foundation (11126267).

SOME NORMALITY CRITERIA OF MEROMORPHIC FUNCTIONS

 LEI Chun-Lin, FANG Ming-Liang*, ZENG Cui-Ping   

  1. Department of Applied Mathematics, South China Agricultural University, Guangzhou 510642, China; Department of Mathematics, Guangdong University of Finance, Guangzhou 510521, China
  • Received:2012-05-13 Revised:2013-01-01 Online:2013-11-20 Published:2013-11-20
  • Contact: FANG Ming-Liang,mlfang@scau.edu.cn E-mail:leichunlin0113@126.com; mlfang@scau.edu.cn;ytxzcp@163.com
  • Supported by:

    Supported by the NNSF of China (11071083), the Tianyuan Foundation (11126267).

摘要:

Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each fF, all of whose zeros have multiplicity at least k + 1, and f + a(f(k))n ≠ b in D, then F is normal in D.

关键词: meromorphic function, value distribution, normal families

Abstract:

Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each fF, all of whose zeros have multiplicity at least k + 1, and f + a(f(k))n ≠ b in D, then F is normal in D.

Key words: meromorphic function, value distribution, normal families

中图分类号: 

  • 30D35