[1] |
Altschuler J, Weed J, Rigollet Ph. Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration. Advances in Neural Information Processing Systems, 2017, 30:1964-1974
|
[2] |
Beurling A. An automorphism of product measures. Ann Math, 1960, 72:189-200
|
[3] |
Birkhoff G. Extensions of Jentzsch's theorem. Transactions of the American Mathematical Society, 1957, 85(1):219-227
|
[4] |
Brenier Y. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, 1991, 44(4):375-417
|
[5] |
Brualdi R A. Combinatorial Matrix Classes. Volume 108. Cambridge University Press, 2006
|
[6] |
Caffarelli L. The Monge-Ampère equation and optimal transportation, an elementary review//Lecture Notes in Mathematics, Springer-Verlag, 2003:1-10
|
[7] |
Cheng L Y, Li R N, Wu L. Ricci curvature and W1-exponential convergence of Markov processes on graphs. Preprint 2015, in the Ph.D theses of Cheng and Li at AMSS, Chinese Academy of Sciences 2017
|
[8] |
Chung F R K. Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, 92. Providence, RI:American Mathematical Society, 1997
|
[9] |
Courty N, Flamary R, Tuia D, Corpetti T. Optimal transport for data fusion in remote sensing//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016:3571-3574
|
[10] |
Cruzeiro A B, Wu L, Zambrini J C. Bernstein processes associated with a Markov process//Rebolledo R, ed. Stochastic Analysis and Mathematical Physics. ANESTOC'98, Proceedings of the Third International Workshop (Boston) Trends in Mathematics. Birkhäuser, 2000:41-71
|
[11] |
Csiszar I. I-divergence geometry of probability distributions and minimization problems. Annals of Probability, 1975, 3(1):146-158
|
[12] |
Cuturi M. Sinkhorn distances:lightspeed computation of optimal transport. Advances in Neural Information Processing Systems, 2013, 26:2292-2300
|
[13] |
Dantzig G B. Programming of interdependent activities:II mathematical model. Econometrica, 1949, 17(3/4):200-211
|
[14] |
Dantzig G B. Application of the simplex method to a transportation problem. Activity Analysis of Production and Allocation, 1951, 13:359-373
|
[15] |
Delon J. Midway image equalization. Journal of Mathematical Imaging and Vision, 2004, 21(2):119-134
|
[16] |
Di Marino S, Gerolin A. An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm. Journal of Scientific Computing, 2020, 85(2):27
|
[17] |
El Moselhy T A, Marzouk Y M. Bayesian inference with optimal maps. Journal of Computational Physics, 2012, 231(23):7815-7850
|
[18] |
Erlander S. Optimal Spatial Interaction and the Gravity Model. Volume 173. Springer-Verlag, 1980
|
[19] |
Erlander S, Stewart N F. The Gravity Model in Transportation Analysis:Theory and Extensions. 1990
|
[20] |
Franklin J, Lorenz J. On the scaling of multidimensional matrices. Linear Algebra and its Applications, 1989, 114:717-735
|
[21] |
Frisch U, Matarrese S, Mohayaee R, Sobolevski A. A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature, 2002, 417(6886):260-262
|
[22] |
Galichon A, Salanié B. Matching with trade-offs:revealed preferences over competing characteristics. CEPR Discussion Paper No DP7858, 2010
|
[23] |
Galichon A. Optimal Transport Methods in Economics. Princeton University Press, 2016
|
[24] |
Genevay A, Cuturi M, Peyré G, Bach F. Stochastic optimization for large-scale optimal transport. Advances in Neural Information Processing Systems, 2016:3440-3448
|
[25] |
Graham C, Talay D. Stochastic Simulation and Monte Carlo Methods:Mathematical Foundations of Stochastic Simulation. Stochastic Medelling and Applied Probability 68. Springer, 2013
|
[26] |
Gutierrez J, Rabin J, Galerne B, Hurtut T. Optimal patch assignment for statistically constrained texture synthesis//International Conference on Scale Space and Variational Methods in Computer Vision. Springer, 2017:172-183
|
[27] |
Kantorovich L. On the transfer of masses (in russian). Doklady Akademii Nauk, 1942, 37(2):227-229
|
[28] |
Kim S, Ma R, Mesa D, Coleman T P. Efficient Bayesian inference methods via convex optimization and optimal transport//IEEE International Symposium on Information Theory. IEEE, 2013:2259-2263
|
[29] |
Kolouri S, Park S R, Thorpe M, Slepcev D, Rohde G K. Optimal mass transport:signal processing and machine-learning applications. IEEE Signal Processing Magazine, 2017, 34(4):43-59
|
[30] |
Kosowsky J J, Yuille A L. The invisible hand algorithm:Solving the assignment problem with statistical physics. Neural Networks, 1994, 7(3):477-490
|
[31] |
Lai R, Zhao H. Multiscale nonrigid point cloud registration using rotation invariant sliced-wasserstein distance via laplace-beltrami eigenmap. SIAM Journal on Imaging Sciences, 2017, 10(2):449-483
|
[32] |
Léonard Ch. From the Schrödinger problem to the Monge-Kantorovich problem. Journal of Functional Analysis, 2012, 262(4):1879-1920
|
[33] |
Léonard Ch. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Continuous Dynamical Systems Series A, 2014, 34(4):1533-1574
|
[34] |
Li P, Wang Q, Zhang L. A novel earth mover's distance methodology for image matching with Gaussian mixture models//Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2013:1689-1696
|
[35] |
Liu W, Ma Y T, Wu L. Spectral gap, isoperimetry and concentration on trees. Sci China Math, 2016, 59(3):539-556
|
[36] |
Ma Y T, Wang R, Wu L. Logarithmic Sobolev, isoperimetry and transport inequalities on graph. Acta Mathematica Sinica, English Series, 2016, 32(10):1221-1236
|
[37] |
Makihara Y, Yagi Y. Earth mover's morphing:Topology-free shape morphing using cluster-based EMD flows//Asian Conference on Computer Vision. Springer, 2010:202-215
|
[38] |
Mathon B, Cayre F, Bas P, Macq B. Optimal transport for secure spread-spectrum watermarking of still images. IEEE Transactions on Image Processing, 2014, 23(4):1694-1705
|
[39] |
Mikami T. Monge's problem with a quadratic cost by the zero-noise limit of h-path processes. Probab Theory Related Fields, 2004, 129(2):245-260
|
[40] |
Mikami T. Stochastic Optimal Transportation:Stochastic Control with Fixed Marginals. Springer, 2021
|
[41] |
Monge G. Mémoire sur la théorie des déblais et des remblais. Histoire de l'Académie Royale des Sciences, 1781:666-704
|
[42] |
Museyko O, Stiglmayr M, Klamroth K, Leugering G. On the application of the Monge-Kantorovich problem to image registration. SIAM Journal on Imaging Sciences, 2009, 2(4):1068-1097
|
[43] |
Oliver D S. Minimization for conditional simulation:Relationship to optimal transport. Journal of Computational Physics, 2014, 265:1-15
|
[44] |
Peyré G, Cuturi M. Computational Optimal Transport:With Application in Data Science. Now Foundation and Trends, 2019
|
[45] |
Peyré G, Cuturi M. Computational optimal transport. Foundations and Trends in Machine Learning, 2019, 11(5/6):355-607
|
[46] |
Rachev S T, Rüschendorf L. Mass Transportation Problems:Volume I:Theory. Springer Science & Business Media, 1998
|
[47] |
Rachev S T, Rüschendorf L. Mass Transportation Problems:Volume II:Applications. Springer Science & Business Media, 1998
|
[48] |
Reich S. A nonparametric ensemble transform method for Bayesian inference. SIAM Journal on Scientific Computing, 2013, 35(4):A2013-A2024
|
[49] |
Rüschendorf L. Convergence of the iterative proportional fitting procedure. Annals of Statistics, 1995, 23(4):1160-1174
|
[50] |
Samelson H, et al. On the Perron-Frobenius theorem. Michigan Mathematical Journal, 1957, 4(1):57-59
|
[51] |
Santambrogio F. Optimal Transport for Applied Mathematicians. Birkhauser, 2015
|
[52] |
Schrödinger E.Über die Umkehrung der Naturgesetze. Sitzungsberichte Preuss Akad Wiss Berlin Phys Math, 1931, 144:144-153
|
[53] |
Sinkhorn R. A relationship between arbitrary positive matrices and doubly stochastic matrices. Annals of Mathematical Statististics, 1964, 35:876-879
|
[54] |
Su Z, Wang Y, Shi R, Zeng W, Sun J, Luo F, Gu X. Optimal mass transport for shape matching and comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(11):2246-2259
|
[55] |
Villani C. Topics in Optimal Transportation. Graduate Studies in Mathematics Series. American Mathematical Society, 2003
|
[56] |
Villani C. Optimal Transport:Old and New, 338. Springer Verlag, 2009
|
[57] |
Wang W, Ozolek J A, Slepčev D, Lee A B, Chen C, Rohde G K. An optimal transportation approach for nuclear structure-based pathology. IEEE Transactions on Medical Imaging, 2011, 30(3):621-631
|
[58] |
Wang W, Slepčev D, Basu S, Ozolek J A, Rohde G K. A linear optimal transportation framework for quantifying and visualizing variations in sets of images. International Journal of Computer Vision, 2013, 101(2):254-269
|
[59] |
Zhu L, Yang Y, Haker S, Tannenbaum A. An image morphing technique based on optimal mass preserving mapping. IEEE Transactions on Image Processing, 2007, 16(6):1481-1495
|