[1] Lindenstrauss J, Szankowski A. Non linear perturbations of isometries. Astéisque, 1985, 131:357-371 [2] Benyamini Y, Lindenstrauss J. Geometric Nonlinear Functional Analysis I. Amer Math Soc Colloquium Publications, Vol 48. Providence, RI:Amer Math Soc, 2000 [3] Dolinar G. Generalized stability of isometries. J Math Anal Appl, 2000, 242(1):39-56 [4] Cheng L, Fang Q, Luo S, Sun L. On non-surjective coarse isometries between Banach spaces. Quaestiones Mathematicae, 2019, 42(3):347-362 [5] Bourgain R D. Approximate isometries on finite-dimensional Banach spaces. Trans Amer Math Soc, 1975, 207:309-328 [6] Dilworth S J. Approximate isometries on finite-dimensional normed spaces. Bull London Math Soc, 1999, 31:471-476 [7] Vestfrid I A. Almost surjective ε-isometries of Banach spaces. Colloq Math, 2004, 100:17-22 [8] Cheng L, Dong Y, Zhang W. On stability of non-surjective ε-isometries of Banach spaces. J Funct Anal, 2013, 264(3):713-734 [9] Cheng L, Dai D, Dong Y, Zhou Y. Universal stability of Banach spaces of ε-isometries. Studia Math, 2014, 221(2):141-149 [10] Cheng L, Zhou Y. On preturbed metric-preserved mappings and their stability characterizations. J Funct Anal, 2014, 266(8):4995-5015 [11] Dai D, Dong Y. Stablility of Banach spaces via nonlinear ε-isometries. J Math Anal Appl, 2014, 414:996-1005 [12] Vestfrid I A. Stability of almost surjective ε-isometries of Banach spaces. J Funct Anal, 2015, 269(7):2165-2170 [13] Zhou Y, Zhang Z, Liu C. Stability of ε-isometric embeddings into Banach spaces of continuous functions. J Math Anal Appl, 2017, 453:805-820 [14] Cheng L, Cheng Q, Tu K, Zhang J. A universal theorem for stability of ε-isometries of Banach spaces. J Funct Anal, 2015, 269(1):199-214 [15] Cheng L, Dong Y. Corrigendum to "A universal theorem for stability of ε-isometries of Banach spaces"[J Funct Anal, 2015, 269(1):199-214]. J Funct Anal, 2020, 279:108518 [16] Mazur S, Ulam S. Sur les transformations isométriques d'espaces vectoriels normés. C R Acad Sci Paris, 1932, 194:946-948 |