[1] Mach E. Uber den verlauf von funkenwellenin der ebene und im raume. Akademie der Wissenschaften Wien, 1878, 77:819-838 [2] von Neumann J. Oblique reflection of shock. Washington, DC, USA:Explos Res Rept 12, Navy Dept Bureau of Ordinance, 1943 [3] Colella P, Henderson L F. The von Neumann paradox for the diffraction of a weak shock waves. J Fluid Mech, 1990, 213:71-94 [4] Skews B W, Ashworth J T. The physical nature of weak shock wave reflection. J Fluid Mech, 2005, 542:105-114 [5] Hunter J K, Brio M. Weak shock reflection. J Fluid Mech, 2000, 410:235-261 [6] Tesdall A M, Hunter J K. Self-similar solution for weak shock reflection. SIAM J Appl Math, 2002, 63:42-61 [7] Tesdall A M, Sanders R, Keyfitz B L. The triple point paradox for the nonlinear wave system. SIAM J Appl Math, 2006, 67:321-336 [8] Guderley K G. Considerations on the structure of mixed subsonic supersonic flow patterns//Tech Report F-TR-2168-ND. Wright Field, Dayton, Ohio:Headquarters Air Materiel Command, 1947 [9] Chen G Q, Rigby M. Stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. Acta Mathematica Scientia, 2018, 38B(5):1485-1514 [10] Olim M, Dewey J M. A revised three shock solution for the Mach reflection of weak shocks. Shock Waves, 1992, 2(3):167-176 [11] Lai G, Sheng W C. Nonexistence of the Von Neumann reflection configuration for the triple point paradox. SIAM J Appl Math, 2011, 71:2072-2092 [12] Vasilev E I. High-resolution simulation for the Mach reflection of weak shock waves. In Proceedings of the Fourth European Computational Fluid Dynamics Conference, 1998, 1:520-527 [13] Tesdall A M, Hunter J K. Self-similar solutions for weak shock reflection. SIAM J Appl Math, 2002, 63:42-61 [14] Tesdall A M, Sanders R, Keyfitz B L. The triple point paradox for the nonlinear wave system. SIAM J Appl Math, 2006, 67:321-336 [15] Skews B W, Ashworth J T. The physical nature of weak shock wave reflection. J Fluid Mech, 2005, 542:105-114 [16] Skews B W, Li G, Paton R. Experiments on Guderley Mach reflection. Shock Waves, 2009, 19:95-102 [17] Tesdall A M, Sanders R, Keyfitz B L. Self-similar solutions for the triple point paradox in gas dynamics. SIAM J Appl Math, 2008, 68:1360-1377 [18] Vasilev E, Kraiko A. Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions. Comput Math Phys, 1999, 39:1335-1345 [19] Zakharian A, Brio M, Hunter J K, Webb G. The von Neumann paradox in weak shock reflection. J Fluid Mech, 2000, 422:193-205 [20] Hunter J K, Brio M. Weak shock reflection. J Fluid Mech, 2000, 410:235-261 [21] Lai G, Sheng W C. Two-dimensional centered wave flow patches to the Guderley Mach reflection configuratins for steady flows in gas dynamics. Journal of Hyperbolic Differential Equations, 2016, 13(1):107-128 [22] Ben-Dor G. Shock wave reflection phenomena. New York:Springer-Verlag, 1992 [23] Vasilev E I, Elperin T, Ben-Dor G. Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge. Physics of Fluids, 2008, 20(4):046101 [24] Courant R, Friedrichs K O. Supersonic Flow and Shock Wave. New York:Interscience Publishers Inc, 1948 |