[1] Adams R A. Sobolev Spaces. New York:Academic Press, 1975 [2] Appelhans D, Manteuffel T, McCormick S, Ruge J. A low-communication, parallel algorithm for solving PDEs based on range decomposition. Numer Linear Algebra Appl, 2017, 24:e2041. doi:10.1002/nla.2041 [3] Babuška I, Melenk J. The partition of unity method. Int J Numer Meth Eng, 1997, 40:727-758 [4] Bank R, Jimack P. A new parallel domain decomposition method for the adaptive finite element solution of elliptic partial differential equations. Concurrency Computat:Pract Exper, 2001, 13:327-350 [5] Ciarlet P G. The finite element method for elliptic problems. SIAM Classics in Appl Math 40. Philadelphia:SIAM, 2002 [6] Du G, Zuo L. A two-grid parallel partition of unity finite element scheme. Numer Algorithms, 2019, 80:429-445 [7] Du G, Hou Y, Zuo L. Local and parallel finite element methods for the mixed Navier-Stokes/Darcy model. Int J Comput Math, 2016, 93:1155-1172 [8] Du G, Hou Y, Zuo L. A modified local and parallel finite element method for the mixed Stokes-Darcy model. J Math Anal Appl, 2016, 435:1129-1145 [9] Du G, Zuo L. Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions. Acta Mathematica Scientia, 2017, 37B:1331-1347 [10] Girault V, Glowinski R, López H, Vila J-P. A boundary multiplier/fictitious domain method for the steady incompressible Navier-Stokes equations. Numer Math, 2001, 88:75-103 [11] Målqvist A, Peterseim D. Localization of elliptic multiscale problems. Math Comput, 2012, 83:2583-2603 [12] He Y, Mei L, Shang Y, Cui J. Newton iterative parallel finite element algorithm for the steady NavierStokes equations. J Sci Comput, 2010, 44:92-106 [13] He Y, Xu J, Zhou A. Local and parallel finite element algorithms for the Navier-Stokes problem. J Comput Math, 2006, 24:227-238 [14] He Y, Xu J, Zhou A, Li J. Local and parallel finite element algorithms for the Stokes problem. Numer Math, 2008, 109:415-434 [15] Hou Y, Du G. An Expandable Local and Parallel Two-Grid Finite Element Scheme. Comput Math Appl, 2016, 71:2541-2556 [16] Larson M G, Malqvist A. Adaptive Variational Multi-scale Methods Based on a Posteriori Error Estimation:Energy Norm Estimates for Elliptic Problems. Comput Method Appl M, 2007, 196:2313-2324 [17] Melenk J, Babuška I. The partition of unity finite element method:basic theory and applications. Comput Method Appl M, 1996, 139:289-314 [18] Shang Y, He Y. A parallel Oseen-linearized algorithm for the stationary Navier-Stokes equations. Comput Method Appl M, 2012, 209-212:172-183 [19] Song L, Hou Y, Zheng H. Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations. J Sci Comput, 2013, 55:255-267 [20] Xu J, Zhou A. Local and parallel finite element algorithms based on two-grid discretizations. Math Comput, 2000, 69:881-909 [21] Xu J, Zhou A. Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems. Adv Comput Math, 2001, 14:293-327 [22] Yu J, Shi F, Zheng H. Local and parallel finite element method based on the partition of unity for the stokes problem. SIAM J Sci Comput, 2014, 36:C547-C567 [23] Zheng H, Song L, Hou Y, Zhang Y. The partition of unity parallel finite element algorithm. Adv Comput Math, 2014, 41:937-951 [24] Zheng H, Yu J, Shi F. Local and parallel finite element method based on the partition of unity for incompressible flow. J Sci Comput, 2015, 65:512-532 [25] Zheng H, Shi F, Hou Y, et al. New local and parallel finite element algorithm based on the partition of unity. J Math Anal Appl, 2016, 435:1-19 |