[1] Almeida R, Malinowska A B, Odzijewicz T. Fractional differential equations with dependence on the Caputo-Katugampola derivative. J Comput Nonlinear Dynam, 2016, 11:061017 [2] Baleanu D, Wu G C, Zeng S D. Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos, Solitons and Fractals, 2017, 102:99-105 [3] Ben Makhlouf A. Stability with respect to part of the variables of nonlinear Caputo fractional differential equations. Math Commun, 2018, 23:119-126 [4] Ben Makhlouf A, Nagy A M. Finite-time stability of linear Caputo-Katugampola fractional-order time delay systems. Asian Journal of Control, 2018, https://doi.org/10.1002/asjc.1880 [5] Boroomand A, Menhaj M B. Fractional-order Hopfeld neural networks. Lecture Notes in Computer Science, 2009, 5509:883-890 [6] Boucenna D, Ben Makhlouf A, Naifar O, Guezane-Lakoud A, Hammami M A. Linearized stability analysis of Caputo-Katugampola fractional-order nonlinear systems. J Nonlinear Funct Anal, 2018, 2018:Article 27 [7] Burov S, Barkai E. Fractional Langevin equation:overdamped, underdamped, and critical behaviors. Phys Rev E, 2008, 78(3):031112 [8] Corduneanu C. Integral Equations and Stability of Feedback Systems. New York, London:Academic Press, 1973 [9] Debnath L. Fractional integrals and fractional differential equations in fluid mechanics. Frac Calc Appl Anal, 2003, 6:119155 [10] Duarte-Mermoud M A, Aguila-Camacho N, Gallegos J A, Castro-Linares R. Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun Nonlinear Sci Numer Simul, 2015, 22(1/3):650-659 [11] Ge F, Kou C. Stability analysis by Krasnoselskii's fixed point theorem for nonlinear fractional differential equations. Appl Math Comput, 2015, 257:308316 [12] Hilfer R. Applications of Fractional Calculus in Physics. Singapore:World Science Publishing, 2000 [13] Katugampola U N. Existence and uniqueness results for a class of generalized fractional differential equations. arXiv:1411.5229, 2014 [14] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Application of Fractional Differential Equations. New York:Elsevier, 2006 [15] Kou C, Zhou H, Yan Y. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal, 2011, 74:5975-5986 [16] Krasnoselskii M A. Some problems of nonlinear analysis. Amer Math Soc Transl, 1958, 10:345-409 [17] Laskin N. Fractional market dynamics. Phys A, 2000, 287(3/4):482-492 [18] Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45(8):1965-1969 [19] Magin R. Fractional calculus in bioengineering. Critical Reviews in Biomedical Engineering, 2004, 32:195-377 [20] Matignon D. Stability result on fractional differential equations with applications to control processing//IMACS SMC Proc, Lille, France, 1996:963-968 [21] Naifar O, Ben Makhlouf A, Hammami M A. Comments on "Mittag-Leffler stability of fractional order nonlinear dynamic systems[Automatica, 2009, 45(8):1965-1969]". Automatica, 2017, 75:329 [22] Naifar O, Ben Makhlouf A, Hammami M A. Comments on Lyapunov stability theorem about fractional system without and with delay. Commun Nonlinear Sci Numer Simul, 2016, 30:360-361 [23] Naifar O, Ben Makhlouf A, Hammami M A, Chen L. Global practical mittag leffler stabilization by output feedback for a class of nonlinear fractional-order systems. Asian Journal of Control, 2018, 20:599-607 [24] Podlubny I. Fractional Differential Equations. New York:Academic Press, 1999 [25] Soczkiewicz E. Application of fractional calculus in the theory of viscoelasticity. Molecular and Quantum Acoustics, 200223:397-404 [26] Sun H, Abdelwahad A, Onaral B. Linear approximation of transfer function with a pole of fractional order. IEEE Trans Automat Contr, 1984, 29(5):441-444 [27] Tripathil D, Pandey S, Das S. Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel. Applied Mathematics and Computation, 2010, 215:3645-3654 |