[1] Abbas M, Ali B, Romaguera S. Fixed and periodic points of generalized contractions in metric space. Fixed Point Theory Appl, 2013, 2013: 243
[2] Baleanu D, Rezapour Sh, Mohammadi M. Some existence results on nonlinear fractional differential equa-tions. Philos Trans R Soc A, Math Phys Eng Sci, 2013, 371(1990): Article ID 20120144
[3] Banach S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math, 1922, 3: 133-181
[4] Boyd D W, Wong J S. On nonlinear contractions. Proc Amer Math Soc, 1969, 20: 458-462
[5] Caristi J. Fixed point theorems for mappings satisfying inwardness conditions. Trans Amer Math Soc, 1976, 215: 241-251
[6] ?iri? Lj B. A generalization of Banach's contraction principle. Proc Amer Math Soc, 1974, 45: 267-273
[7] Hardy G E, Rogers T D. A generalization of a fixed point theorem of Reich. Canadian Math Bull, 1973, 16: 201-206
[8] Hussain N, Salimi P. Suzuki-Wardowski type fixed point theorems for α-GF-contractions. Taiwanese J Math, 2014, 18: 1879-1895
[9] Jachymski J. The contraction principle for mapping on a metric space with a graph. Proc Amer Math Soc, 2008, 136: 1359-1373
[10] Jeong G S, Rhoades B E. Maps for which F(T)=F(Tn). Fixed Point Theory Appl, 2005, 6: 87-131
[11] Khan M S, Swaleh M, Sessa S. Fixed point theorems by altering distances between the points. Bull Aust Math Soc, 1984, 30: 1-9
[12] Kirk W A, Srinivasan P S, Veeramani P. Fixed points for mappings satisfying cyclical contractive condi-tions. Fixed Point Theory, 2003, 4: 79-89
[13] Lakshmikantham V, ?iri? Lj B. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal, 2009, 70: 4341-4349
[14] Meir A, Keeler E. A theorem on contraction mappings. J Math Anal Appl, 1969, 28: 326-329
[15] Podlubny I. Fractional Differential Equations. Academic Press, 1999
[16] Ran A C M, Reurings M C B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc Amer Math Soc, 2004, 132: 1435-1443
[17] Reich S. Some remarks concerning contraction mappings. Canadian Math Bull, 1971, 14: 121-124
[18] Samet B, Vetro C, Vetro P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal, 2012, 75: 2154-2165
[19] SgroiM, Vetro C.Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat, 2013, 27: 1259-1268
[20] Suzuki T. A generalized Banach contraction principle that characterizes metric completeness. Proc Amer Math Soc, 2008, 136: 1861-1869
[21] Wardowski D. Fixed points of new type of contractive mappings in complete metric space. Fixed Point Theory Appl, 2012, doi:10.1186/1687-1812-2012-94
[22] Wardowski D, Van Dung N. Fixed points of F-weak contractions on complete metric space. Demonstratio Math, 2014, 47: 146-155 |