[1] Bethuel F, Caldiroli P, Guida M. Parametric Surfaces with Prescribed Mean Curvature. Rend Sem Mat Univ Torino, 2002, 60(4):175-231 [2] Bögelein V, Duzaar F, Scheven C. Weak solutions to the heat flow for surfaces of prescribed mean curvature. Trans Amer Math Soc, 2013, 365(9):4633-4677 [3] Bögelein V, Duzaar F, Scheven C. Short-time regularity for the H-surface flow. Int Math Res Not IMRN, 2015 [4] Brezis H, Coron J M. Multiple Solutions of H-systems and Rellich's conjecture. Comm Pure Appl Math, 1984, 37(2):147-187 [5] Brezis H, Coron J M. Convergence of solutions of H-systems or how to blow bubbles. Arch Rat Mech Anal, 1985, 89(1):21-56 [6] Caldiroli P, Musina R. The Dirichlet problem for H-systems with small boundary data:Blowup phenomena and nonexistence results. Arch Rat Mech Anal, 2006, 181(1):142-183 [7] Chang K C. Heat flow and boundary value problem for harmonic maps. Annales de l'institut Henri Poincaré C, Analyse non linéaire, 1989, 6(5):363-395 [8] Chang K C, Liu J Q. Heat flow for the minimal surface with Plateau boundary condition. Acta Mathematica Sinica (English series), 2003, 19(1):1-28 [9] Chang K C, Liu J Q. Another approach to the heat flow for Plateau problem. J Differential Equations, 2003, 189(1):46-70 [10] Chang K C, Liu J Q. An evolution of minimal surfaces with Plateau condition. Calc Var, 2004, 19(2):117-163 [11] Chang K C, Liu J Q. Boundary flow for the minimal surfaces in Rn with Plateau boundary condition. Proc Roy Soc Edinburgh Sect A, 2005, 135(3):537-562 [12] Chen Y, Levine S. The existence of the heat flow for H-systems. Disc Cont Dyna Syst, 2002, 8(1):219-236 [13] Hildebrant S. On the Plateau problem for surfaces of constant mean curvature. Comm Pure Appl Math, 1970, 23(1):97-114 [14] Huang T, Tan Z, Wang C Y. On the heat flow of equation of surfaces of constant mean curvature. Manuscripta Math, 2011, 134(1/2):259-271 [15] Levine H A. Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=-Au + F(u). Arch Rat Mech Anal, 1973, 51(5):371-386 [16] Rey O. Heat flow for the equation of surfaces with prescribed mean curvature. Math Ann, 1991, 297(1):123-146 [17] Struwe M. The existence of surfaces of constant mean curvature with free boundaries. Acta Math, 1988, 160(1):19-64 [18] Tan Z. Global solutions and blowup of semilinear heat equation with critical sobolev exponent. Commun Partial Differential Equations, 2001, 26(3/4):717-741 [19] Tan Z. The reaction-diffusion equation with Lewis function and critical Sobolev exponent. J Math Anal Appl, 2002, 272(2):480-495 [20] Tan Z. Asymptotic behavior and blowup of some degenerate parabolic equation with critical Sobolev exponent. Commun Appl Anal, 2004, 8(1):67-85 [21] Wente H C. An existence theorem for surfaces of constant mean curvature. J Math Anal Appl, 1969, 26(2):318-344 |